Patents Assigned to Brookhaven Science Associates LLC
  • Patent number: 9082522
    Abstract: A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90° as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: July 14, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Raymond P. Conley, Chian Qian Liu, Albert T. Macrander, Hanfei Yan, Jorg Maser, Hyon Chol Kang, Gregory Brian Stephenson
  • Patent number: 9071219
    Abstract: An analog filter is presented that comprises a chain of filter stages, a feedback resistor for providing a negative feedback, and a feedback capacitor for providing a positive feedback. Each filter stage has an input node and an output node. The output node of a filter stage is connected to the input node of an immediately succeeding filter stage through a resistor. The feedback resistor has a first end connected to the output node of the last filter stage along the chain of filter stages, and a second end connected to the input node of a first preceding filter stage. The feedback capacitor has a first end connected to the output node of one of the chain of filter stages, and a second end connected to the input node of a second preceding filter stage.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: June 30, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Gianluigi De Geronimo, Shaorui Li
  • Publication number: 20150177376
    Abstract: Technologies are described effective to implement an atmospheric radar system. An antenna array transmits a wave toward an atmospheric target and receives a reflected wave that includes voltages corresponding to backscattered radar signal measurements. A processor includes a coherency matrix generator module effective to receive the voltages and generate a coherency matrix. The processor further includes an eigenvalue calculator module effective to receive the coherency matrix and calculate eigenvalues of the coherency matrix The processor includes an eigenvalue variable calculator module effective to receive the eigenvalues and calculate eigenvalue meteorological variables from the eigenvalues. The processor further includes an atmosphere display module effective to receive the eigenvalue meteorological variables and generate an output signal that corresponds to the meteorological property of the atmospheric target in response.
    Type: Application
    Filed: June 19, 2013
    Publication date: June 25, 2015
    Applicant: BROOKHAVEN SCIENCE ASSOCIATES LLC
    Inventor: Michele Galletti
  • Publication number: 20150171426
    Abstract: Amorphus germanium oxide materials are provided that are composed of germanium and oxygen having a formula GeOx, where 0.01?x?1.99. The germanium oxide forms nanoscale hierarchical porous agglomerates that have high capacity, high diffusivity of lithium, and enhanced cycling stability. The enhanced or superior performance (structural stability and reactivity) of these materials is due to the formation of ultrafine primary nanoparticles, amorphization, pore formation, preferably of nanoscale nature, and the incorporation of oxygen. These amorphous germanium oxide materials may serve as high-capacity anode materials and afford an enhanced capacity applicable for electrochemical cells such as Li-ion batteries.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 18, 2015
    Applicant: BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: Xiao-Liang Wang, Weiqiang Han
  • Patent number: 9051638
    Abstract: A sputtering apparatus that includes at least a target presented as an inner surface of a confinement structure, the inner surface of the confinement structure is preferably an internal wall of a circular tube. A cathode is disposed adjacent the internal wall of the circular tube. The cathode preferably provides a hollow core, within which a magnetron is disposed. Preferably, an actuator is attached to the magnetron, wherein a position of the magnetron within the hollow core is altered upon activation of the actuator. Additionally, a carriage supporting the cathode and communicating with the target is preferably provided, and a cable bundle interacting with the cathode and linked to a cable bundle take up mechanism provided power and coolant to the cathode, magnetron, actuator and an anode of the sputtering apparatus.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: June 9, 2015
    Assignees: POOLE VENTURA, INC., BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: Mark R. Erickson, Henry J. Poole, Arthur W. Custer, III, Ady Hershcovitch
  • Patent number: 9034165
    Abstract: A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: May 19, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Jia Xu Wang, Radoslav R. Adzic
  • Publication number: 20150122324
    Abstract: A photovoltaic device is provided that includes a first electrode layer and a second electrode layer; and a waveguiding structure disposed between the first electrode layer and the second electrode layer which includes an active layer adapted to convert photons transmitted to the active layer to electrons and holes. The waveguiding structure further includes a first layer adjacent the first electrode layer that includes a hole-conducting material having a first index of refraction, and a second layer including an electron-conducting material having a second index of refraction, wherein the active layer is disposed therebetween. The active layer has an index of refraction that is less than each of the first index of refraction and the second index of refraction and a thickness. The waveguiding structure is characterized by guided modes adapted for optically confining the photons within the active layer.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 7, 2015
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Matthew Eisaman, Yutong Pang, Nanditha Dissanayake
  • Patent number: 9017530
    Abstract: An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 28, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Junliang Zhang, Kotaro Sasaki
  • Patent number: 9012770
    Abstract: Optoelectronic devices and thin-film semiconductor compositions and methods for making same are disclosed. The methods provide for the synthesis of the disclosed composition. The thin-film semiconductor compositions disclosed herein have a unique configuration that exhibits efficient photo-induced charge transfer and high transparency to visible light.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 21, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Mircea Cotlet, Hsing-Lin Wang, Hsinhan Tsai, Zhihua Xu
  • Patent number: 9005331
    Abstract: Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 14, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Junliang Zhang, Yibo Mo, Miomir Vukmirovic
  • Patent number: 9006644
    Abstract: Disclosed is monolayer and/or few-layer graphene on metal or metal-coated substrates. Embodiments include graphene mirrors. In an example, a mirror includes a substrate that has a surface exhibiting a curvature operable to focus an incident beam onto a focal plane. A graphene layer conformally adheres to the substrate, and is operable to protect the substrate surface from degradation due to the incident beam and an ambient environment.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: April 14, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Peter Werner Sutter, Eli Anguelova Sutter
  • Patent number: 8992936
    Abstract: Provided herein are OspA polypeptides from Lyme Disease-causing Borrelia having certain alteration(s). In one embodiment, the alteration(s) increase the conformational stability of the OspA polypeptide containing the alteration(s) while maintaining at least some of the antigenicity of the corresponding unaltered OspA polypeptide. In another embodiment, the altered OspA polypeptide has reduced cross-reactivity to hLFA-1, as compared to the corresponding unaltered OspA polypeptide.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: March 31, 2015
    Assignees: Research Foundation of the State University of New York, Brookhaven Sciences Associates, LLC, University of Rochester
    Inventors: Benjamin J. Luft, John J. Dunn, Shohei Koide, Catherine L. Lawson
  • Publication number: 20150083585
    Abstract: The present invention provides molybdenum and tungsten nanostructures, for example, nanosheets and nanoparticles, and methods of making and using same, including using such nanostructures as catalysts for hydrogen evolution reactions.
    Type: Application
    Filed: October 24, 2014
    Publication date: March 26, 2015
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Kotaro Sasaki, Wei-Fu Chen, James T. Muckerman, Radoslav R. Adzic
  • Publication number: 20150045228
    Abstract: A radio frequency-assisted fast superconducting switch is described. A superconductor is closely coupled to a radio frequency (RF) coil. To turn the switch “off,” i.e., to induce a transition to the normal, resistive state in the superconductor, a voltage burst is applied to the RF coil. This voltage burst is sufficient to induce a current in the coupled superconductor. The combination of the induced current with any other direct current flowing through the superconductor is sufficient to exceed the critical current of the superconductor at the operating temperature, inducing a transition to the normal, resistive state. A by-pass MOSFET may be configured in parallel with the superconductor to act as a current shunt, allowing the voltage across the superconductor to drop below a certain value, at which time the superconductor undergoes a transition to the superconducting state and the switch is reset.
    Type: Application
    Filed: April 9, 2013
    Publication date: February 12, 2015
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Vyacheslav Solovyov, Qiang Li
  • Publication number: 20150017565
    Abstract: Embodiments of the disclosure relate to electrocatalysts. The electrocatalyst may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.
    Type: Application
    Filed: May 15, 2014
    Publication date: January 15, 2015
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Stoyan Bliznakov, Miomir Vukmirovic
  • Patent number: 8932551
    Abstract: A method for providing 11C-labeled cyanides from 11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O2 is provided, wherein 11C labeled oxides are reduced with H2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% 11CH4 , the 11CH4 is then combined with an excess of NH3 in a carrier/reaction stream flowing at an accelerated velocity and the combined 11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900 ° C., whereby a product stream comprising at least about 60%H11CN is provided in less than 10 minutes from retrieval of the 11C labeled oxide.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: January 13, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Dohyun Kim, David Alexoff, Sung Won Kim, Jacob Hooker, Richard A. Ferrieri
  • Patent number: 8927453
    Abstract: The present invention provides molybdenum and tungsten nanostructures, for example, nanosheets and nanoparticles, and methods of making and using same, including using such nanostructures as catlysts for hydrogen evolution reactions.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: January 6, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Sasaki Kotaro, Wei-Fu Chen, James T. Muckerman, Radoslav R. Adzic
  • Publication number: 20150004490
    Abstract: Novel intermetallic materials are provided that are composed of tin and one or more additional metal(s) having a formula M(1-x)-Sn5, where ?0.1?x?0.5, with 0.01?x?0.4 being more preferred and the second metallic element (M) is selected from iron (Fe), copper (Cu), cobalt(Co), nickel (Ni), and a combination of two or more of those metals. Due to low concentration of the second metallic element, the intermetallic compound affords an enhanced capacity applicable for electrochemical cells and may serve as an intermediate phase between Sn and MSn2. A method of synthesizing these intermetallic materials is also disclosed.
    Type: Application
    Filed: June 14, 2012
    Publication date: January 1, 2015
    Applicant: BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: Xiao-Liang Wang, Weiqiang Han
  • Patent number: 8922107
    Abstract: A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: December 30, 2014
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Triveni Rao, John Walsh, Elizabeth Gangone
  • Patent number: 8921801
    Abstract: A ?-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive ?-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a ?-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the ?-radiation. Subsequently, it is determined whether a coincidence exists between the ?-particles and ?-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the ?-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: December 30, 2014
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Istvan Dioszegi, Cynthia Salwen, Peter Vanier