Patents Assigned to Central Research Institute of Electric Power
  • Patent number: 7764373
    Abstract: Fine particles such as nanoparticles and microparticles is irradiated to generate plasma by focusing an ultrashort pulse laser beam 15 emitted from a laser device 16. More preferably, the plasma is generated by a filament 14 generated in the ultrashort pulse laser beam 15. A constituent of the fine particles is measured based on an emission spectrum from the plasma.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: July 27, 2010
    Assignee: Central Research Institute of Electric Power Industry
    Inventors: Takashi Fujii, Naohiko Goto, Megumi Miki, Takuya Nayuki, Koshichi Nemoto, Nobuyuki Tanaka
  • Patent number: 7759016
    Abstract: A cell of a flat plate solid oxide fuel cell has a first electrode member of porous material having pores through which all of a fuel gas or air passes. An electrolyte film is on either a front or a back surface of the first electrode member. A second electrode member is on the electrolyte film and a separator film is on the other surface of the first electrode member. The first electrode member is either a fuel electrode or an air electrode and the second electrode member is the other. Part of the electrolyte film and/or part of the separator film form seal portions which cover side surfaces between the electrolyte film and the separator film and function as gas seal films.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: July 20, 2010
    Assignee: Central Research Institute of Electric Power Industry
    Inventor: Hibiki Itoh
  • Patent number: 7754589
    Abstract: A method for improving the quality of a SiC layer by effectively reducing or eliminating the carrier trapping centers in the as-grown SiC crystal. The method includes the steps of: (a) carrying out ion implantation of carbon atoms, silicon atoms, hydrogen atoms, or helium atoms into a shallow surface layer of the SiC crystal layer to introduce carbon interstitials into the surface layer, and (b) growing the SiC layer upward from the edge face of the surface layer into which the carbon interstitials have been introduced, and diffusing out the carbon interstitials that have been introduced into the surface layer from the surface layer into the grown layer and combining the carbon interstitials and point defects to make the electrically active point defects in the grown layer inactive.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: July 13, 2010
    Assignee: Central Research Institute of Electric Power Industry
    Inventors: Hidekazu Tsuchida, Liutauras Storasta
  • Publication number: 20100173475
    Abstract: A method for improving the quality of a SiC layer by effectively reducing or eliminating the carrier trapping centers in the as-grown SiC crystal. The method includes the steps of: (a) carrying out ion implantation of carbon atoms, silicon atoms, hydrogen atoms, or helium atoms into a shallow surface layer of the SiC crystal layer to introduce carbon interstitials into the surface layer, and (b) growing the SiC layer upward from the edge face of the surface layer into which the carbon interstitials have been introduced, and diffusing out the carbon interstitials that have been introduced into the surface layer from the surface layer into the grown layer and combining the carbon interstitials and point defects to make the electrically active point defects in the grown layer inactive.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 8, 2010
    Applicant: Central Research Institute of Electric Power Industry
    Inventors: Hidekazu Tsuchida, Liutauras Storasta
  • Patent number: 7737011
    Abstract: It is an object to provide a method for improving the quality of an SiC layer by effectively reducing or eliminating the carrier trapping centers by high temperature annealing and an SiC semiconductor device fabricated by the method. A method for improving the quality of an SiC layer by eliminating or reducing some carrier trapping centers comprising the steps of: (a) carrying out ion implantation of carbon atoms (C), silicon atoms, hydrogen atoms, or helium atoms into a shallow surface layer (A) of the starting SiC crystal layer (E) to introduce excess carbon interstitials into the implanted surface layer, and (b) heating the layer for making the carbon interstitials (C) to diffuse out from the implanted surface layer (A) into a bulk layer (E) and for making the electrically active point defects in the bulk layer inactive. After the above steps, the surface layer (A) can be etched or mechanically removed. A semiconductor device according to the invention is fabricated by the method.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: June 15, 2010
    Assignee: Central Research Institute of Electric Power Industry
    Inventors: Hidekazu Tsuchida, Liutauras Storasta
  • Patent number: 7722923
    Abstract: Method for producing a multifunctional material includes thermally treating a substrate having a surface layer formed of titanium, titanium oxide, a titanium alloy, or a titanium alloy oxide so that the temperature of the surface layer is raised to 600° C. or higher, to thereby provide, in the interior of the surface layer, a second layer formed of forest microcolumns of titanium oxide or a titanium alloy oxide; and subsequently cutting the second layer in parallel with the surface layer, to yield a material including the substrate and a layer formed of titanium-oxide- or titanium-alloy-oxide-formed forest microcolumns exposed on at least a portion of the substrate, as well as a material including a thin film, numerous continuous small-width with protrusions thereon, and forest microcolumns formed on the protrusions.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: May 25, 2010
    Assignee: Central Research Institute of Electric Power Industry
    Inventor: Masahiro Furuya
  • Patent number: 7718270
    Abstract: The multifunctional material can readily adsorb even VOCs, which exhibits high photocatalytic activity and functions as visible-light-responsive photocatalyst by virtue of a large surface area and of being doped with carbon, has high hardness and exhibits excellent exfoliation resistance, wear resistance, resistance to chemicals, and heat resistance. The multifunctional material has a large number of protrusions of titanium oxide or a titanium alloy oxide on at least a portion of a surface of the material for example forest microcolumns of titanium oxide, the layer being exposed on the surface and the microcolumns being doped with carbon.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: May 18, 2010
    Assignee: Central Research Institute of Electric Power Industry
    Inventor: Masahiro Furuya
  • Publication number: 20100108600
    Abstract: A method and apparatus for treatment of a water-containing material. The method includes: (A) bringing a liquid of a substance in a gaseous state under normal temperature and pressure conditions into contact with a water-containing material; (B) obtaining a liquid layer through solid-liquid separation from a treated product resulting from (A); (C) vaporizing and extracting at least a portion of the substance that is in the gaseous state under normal temperature and pressure conditions as gas from the liquid layer obtained from (B); and (D) collecting a lower layer resulting from liquid-liquid separation conducting on a liquid layer resulting from (C). The method and apparatus achieve efficient treatment of a water-containing material and allow the material after the treatment to be recycled as a resource.
    Type: Application
    Filed: January 30, 2008
    Publication date: May 6, 2010
    Applicants: Central Research Institute of Electric Power Ind., Tsukishima Kikai Co., Ltd.
    Inventors: Hideki Kanda, Hisao Makino, Mayumi Morita, Keizo Takegami, Akio Yoshikoshi, Masazumi Takahashi
  • Publication number: 20100101928
    Abstract: The present invention is to provide means by which energy required for treating sewage sludge can be saved.
    Type: Application
    Filed: March 6, 2008
    Publication date: April 29, 2010
    Applicants: Central Research Institute of Electric Power Ind., TSUKISHIMA KIKAI CO., LTD.
    Inventors: Hideki Kanda, Hisao Makino, Mayumi Morita, Keizo Takegami, Akio Yoshikoshi, Masazumi Takahashi
  • Publication number: 20100084663
    Abstract: A silicon carbide Zener diode is a bipolar semiconductor device that has a mesa structure and includes a silicon carbide single crystal substrate of a first conductivity type, formed thereon, a silicon carbide conductive layer of a first conductivity type, and a silicon carbide conductive layer of a second conductivity type formed on the silicon carbide conductive layer of a first conductivity type, wherein a depletion layer that is formed under reverse bias at a junction between the silicon carbide conductive layer of a first conductivity type and the silicon carbide conductive layer of a second conductivity type does not reach a mesa corner formed in the silicon carbide conductive layer of a first conductivity type.
    Type: Application
    Filed: April 25, 2008
    Publication date: April 8, 2010
    Applicant: Central Research Institute of Electric Power
    Inventors: Ryosuke Ishii, Koji Nakayama, Yoshitaka Sugawara, Hidekazu Tsuchida
  • Patent number: 7683009
    Abstract: The present invention provides a Bi2223 based thick film that does not peel off when a thermal or a mechanical shock is applied to a base or an oxide superconductor thick film or the like in the middle of a manufacturing process and a method of manufacturing the same. An oxide superconductor paste 1 having a mixing ratio of Bi2212 composition is applied to a base 3, dried, burned, and thereafter burned at a temperature approximate to its melting point to obtain a partially molten layer 4. Next, an oxide superconductor paste 2 having a mixing ratio of Bi2223 composition is applied to the partially molten layer 4, dried, burned, compressed by a CIP, and thereafter repeatedly burned and compressed for a predetermined number of times to obtain the base 3 having a desired superconductor thick film 5 formed thereon.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: March 23, 2010
    Assignees: Central Research Institute of Electric Power Industry, DOWA Electronics Materials Co., Ltd.
    Inventors: Masahiro Kojima, Masakazu Kawahara, Michiharu Ichikawa, Hiroyuki Kado, Masatoyo Shibuya
  • Publication number: 20100051913
    Abstract: An organic field-effect transistor normally includes: a source electrode and a drain electrode; an organic semiconductor layer in contact with the source electrode and the drain electrode; a gate insulating layer adjacent to the organic semiconductor layer; and a gate electrode in contact with the gate insulating layer. The gate insulating layer according to the present invention is in a liquid state, constituted with a material containing no glue or thickener, a sole or main component of which is an ionic liquid. Thus the capacitance of the ionic liquid corresponding to a gate voltage modulation frequency of 10 Hz is reduced to 1/10 at a frequency of 10 kHz of higher. As a result, an organic field-effect transistor capable of operating at low voltage and assuring ample current gain and high-speed response (the capacitance of the ionic liquid corresponding to a gate voltage modulation frequency of 10 Hz is reduced to 1/10 at a frequency of 10 kHz of higher) is provided.
    Type: Application
    Filed: July 10, 2009
    Publication date: March 4, 2010
    Applicants: NATIONAL INSTITUTE OF JAPAN SCIENCE AND TECHNOLOGY AGENCY, CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY
    Inventors: Junichi Takeya, Shimpei Ono, Shiro Seki
  • Publication number: 20100032686
    Abstract: Bipolar semiconductor devices have a Zener voltage controlled very precisely in a wide range of Zener voltages (for example, from 10 to 500 V). A bipolar semiconductor device has a mesa structure and includes a silicon carbide single crystal substrate of a first conductivity type, a silicon carbide conductive layer of a first conductivity type, a highly doped layer of a second conductivity type and a silicon carbide conductive layer of a second conductivity type which substrate and conductive layers are laminated in the order named.
    Type: Application
    Filed: January 31, 2008
    Publication date: February 11, 2010
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY
    Inventors: Ryosuke Ishii, Koji Nakayama, Yoshitaka Sugawara, Hidekazu Tsuchida
  • Publication number: 20100015486
    Abstract: Coal is reacted in a furnace 22 to obtain a coal gasification gas. The coal gasification gas is cooled by a gas cooler 23, passed through a porous filter 24, and desulfurized by a desulfurizer 25 to produce a CO-containing gas as an anode. The CO gas-containing gas is subjected to an exothermic reaction in a shift reactor 26 to form H2 and CO2, and the anode gas containing H2 is supplied to an anode 7 of MCFC 2. Thus, in the absence of an extra heat source and a heat exchange source, a desired anode gas is obtained from the coal gasification gas, and with heat buildup of the MCFC 2 being inhibited and its performance being maintained, reduction of CO2 is taken into consideration. A power generating plant equipped with the MCFC 2 capable of using a coal gasification fuel substantially containing a CO gas is thus achieved.
    Type: Application
    Filed: January 28, 2008
    Publication date: January 21, 2010
    Applicant: Central Research Institute of Electric Power Industry
    Inventor: Fumihiko Yoshiba
  • Patent number: 7638463
    Abstract: To provide an oxide superconductor thick film formation method that can enhance adhesiveness of a Bi2223 thick film to a body to be processed on which the Bi2223 thick film is formed, and increase a cross-sectional area of the Bi2223 thick film, without a decrease in Jc of the Bi2223 thick film. A mixture of a compound oxide having composition Bi2212 and Pb is applied to a surface of the body to be processed, and burned to form a first thick film. An oxide superconductor thick film expressed by a general formula (Bi, Pb)2+aSr2Ca2Cu3OZ (where ?0.1?a?0.5) is formed on the first thick film.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: December 29, 2009
    Assignees: DOWA Electronics Materials Co., Ltd., Central Research Institute of Electric Power Industry
    Inventors: Masahiro Kojima, Masakazu Kawahara, Michiharu Ichikawa, Hiroyuki Kado
  • Publication number: 20090317983
    Abstract: In a bipolar silicon carbide semiconductor device in which an electron and a hole recombine with each other during current passage within a silicon carbide epitaxial film grown from a surface of a silicon carbide single crystal substrate, an object described herein is the reduction of defects which are the nuclei of a stacking fault which is expanded by current passage, thereby suppressing the increase of the forward voltage of the bipolar silicon carbide semiconductor device. In a method for producing a bipolar silicon carbide semiconductor device, the device is subjected to a thermal treatment at a temperature of 300° C. or higher in the final step of production. Preferably, the above-mentioned thermal treatment is carried out after the formation of electrodes and then the resulting bipolar silicon carbide semiconductor device is mounted in a package.
    Type: Application
    Filed: September 1, 2006
    Publication date: December 24, 2009
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY
    Inventors: Toshiyuki Miyanagi, Hidekazu Tsuchida, Isaho Kamata, Masahiro Nagano, Yoshitaka Sugawara, Koji Nakayama, Ryosuke Ishii
  • Publication number: 20090304563
    Abstract: The present invention provides a mercury removal system and method for effectively removing a mercury component, which is present in a gas stream in an extremely small amount in wet gas cleaning used for coal or heavy oil gasification, petroleum refining and the like. The mercury removal system in wet gas cleaning comprises a water washing tower for introducing therein a target gas containing a mercury component and transferring the mercury component into an absorbing solution, a flush drum (10) for flushing the absorbing solution discharged from the water washing tower to separate the absorbing solution into a gas component and waste water, an oxidation treatment means (1) for adding an oxidizing agent to the absorbing solution at the preceding stage of the flush drum, and a waste water treatment means for subjecting to coagulation sedimentation treatment the separated waste water containing the mercury component at the following stage of the flush drum to dispose of the mercury component as sludge.
    Type: Application
    Filed: June 9, 2006
    Publication date: December 10, 2009
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., CLEAN COAL POWER R&D CO., LTD., HOKKAIDO ELECTRIC POWER COMPANY INC., TOHOKU ELECTRIC POWER CO., INC., THE TOKYO ELECTRIC POWER COMPANY INC., CHUBU ELECTRIC POWER CO., INC., HOKURIKU ELECTRIC POWER COMPANY, THE KANSAI ELECTRIC POWER CO., INC., THE CHUGOKU ELECTRIC POWER CO., INC., SHIKOKU ELECTRIC POWER CO., INC., KYUSHU ELECTRIC POWER CO., INC., ELECTRIC POWER DEVELOPMENT CO., LTD., CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY
    Inventors: Masahiro Harada, Makoto Susaki, Shintaro Honjo, Shuji Kameyama, Masaki Nakahara, Akira Kisei
  • Patent number: 7618604
    Abstract: An object of the present invention is to provide a method for removing gaseous mercury in flue gas that make it possible to remove mercury in flue gas extremely satisfactorily while handling is made easy and cost increases are kept under control. In order to accomplish the object, the present invention adopts the method of removing gaseous mercury in flue gas, in which, after water-insoluble mercury in the flue gas is converted into water-soluble mercury by placing the flue gas in contact with a solid catalyst formed by a metal oxide, wet-type absorption is performed on the water-soluble mercury.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: November 17, 2009
    Assignees: IHI Corporation, Central Research Institute of Electric Power Industry
    Inventors: Takashi Kiga, Noriyuki Iiyama, Kenji Takano, Akimasa Yamaguchi, Yoshihisa Tochihara, Shigeo Ito
  • Publication number: 20090243026
    Abstract: An intermediate metal film is formed between a Schottky electrode and a pad electrode. A Schottky barrier height between the intermediate metal film and a silicon carbide epitaxial film is equivalent to or higher than a Schottky barrier height between the Schottky electrode and the silicon carbide epitaxial film. By this configuration, an excess current and a leak current through a pin-hole can be suppressed even in the case in which a Schottky barrier height between the pad electrode and the silicon carbide epitaxial film is less than the Schottky barrier height between the Schottky electrode and the silicon carbide epitaxial film.
    Type: Application
    Filed: November 22, 2006
    Publication date: October 1, 2009
    Applicant: Central Research Institute of Electric Power Industry
    Inventors: Tomonori Nakamura, Hidekazu Tsuchida, Toshiyuki Miyanagi
  • Publication number: 20090195296
    Abstract: In a bipolar semiconductor device such that electrons and holes are recombined in a silicon carbide epitaxial film grown from the surface of a silicon carbide single crystal substrate at the time of on-state forward bias operation; an on-state forward voltage increased in a silicon carbide bipolar semiconductor device is recovered by shrinking the stacking fault area enlarged by on-state forward bias operation. In a method of this invention, the bipolar semiconductor device in which the stacking fault area enlarged and the on-state forward voltage has been increased by on-state forward bias operation, is heated at a temperature of higher than 350° C.
    Type: Application
    Filed: August 4, 2006
    Publication date: August 6, 2009
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY
    Inventors: Toshiyuki Miyanagi, Hidekazu Tsuchida, Isaho Kamata, Yoshitaka Sugawara, Koji Nakayama, Ryosuke Ishii