Patents Assigned to Chartered Semiconductor Manufacturing Ltd.
  • Patent number: 7776699
    Abstract: A transistor device structure comprising: a substrate portion formed from a first material; and a source region, a drain region and a channel region formed in said substrate, the source and drain regions comprising a plurality of islands of a second material different from the first material, the islands being arranged to induce a strain in said channel region of the substrate.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: August 17, 2010
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jin Ping Liu, Alex K H See, Mei Sheng Zhou, Liang Choo Hsia
  • Patent number: 7772071
    Abstract: The present invention relates to semiconductor integrated circuits. More particularly, but not exclusively, the invention relates to strained channel complimentary metal oxide semiconductor (CMOS) transistor structures and fabrication methods thereof. A strained channel CMOS transistor structure comprises a source stressor region comprising a source extension stressor region; and a drain stressor region comprising a drain extension stressor region; wherein a strained channel region is formed between the source extension stressor region and the drain extension stressor region, a width of said channel region being defined by adjacent ends of said extension stressor regions.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: August 10, 2010
    Assignees: Chartered Semiconductor Manufacturing Ltd., International Business Machines Corporation
    Inventors: Yung Fu Chong, Zhijiong Luo, Judson Holt
  • Publication number: 20100197140
    Abstract: A method for forming a semiconductor device is presented. The method includes providing a substrate having a photoresist thereon and transmitting a light source through a mask having a pattern onto the photoresist. The mask comprises a mask substrate having first, second and third regions, the third region is disposed between the first and second regions. The mask also includes a light reducing layer over the mask substrate having a first opening over the first region and a second opening over the second region. The first and second openings have layer sidewalls. The sidewalls of the light reducing layer are slanted at an angle less than 90 degrees with the plane of a top surface of the mask substrate. The method also includes developing the photoresist to transfer the pattern of the mask to the photoresist.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 5, 2010
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Gek Soon CHUA, Sia Kim TAN, Qunying LIN, Cho Jui TAY, Chenggen QUAN
  • Publication number: 20100196805
    Abstract: A method of making a mask is disclosed. The method includes providing a first and a second mask layers and disposing a first phase shift region on the first mask layer. A second phase shift region is disposed on the second mask layer, wherein the first and second phase shift regions are out of phase. A continuous unit cell is formed in the first phase shift region. The unit cell comprises a center section and distinct extension sections. The extension sections are contiguous to and extend outwards from the center section. The distinct extension sections have a same width as the center section. The second phase shift region is adjacent to the unit cell in the first phase shift region.
    Type: Application
    Filed: January 28, 2010
    Publication date: August 5, 2010
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Sia Kim TAN, Soon Yoeng TAN, Qun Ying LIN, Huey Ming CHONG, Liang Choo HSIA
  • Patent number: 7767577
    Abstract: A processing layer, such as silicon, is formed on a metal silicide contact followed by a metal layer. The silicon and metal layers are annealed to increase the thickness of the metal silicide contact. By selectively increasing the thickness of silicide contacts, Rs of transistors in iso and nested regions can be matched.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: August 3, 2010
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Johnny Widodo, Liang Choo Hsia, James Yong Meng Lee, Wen Zhi Gao, Zhao Lun, Huang Liu, Chung Woh Lai, Shailendra Mishra, Yew Tuck Chow, Fang Chen, Shiang Yang Ong
  • Publication number: 20100187587
    Abstract: A memory cell includes a substrate, an access transistor and a storage capacitor. The access transistor comprising a gate stack disposed on the substrate, and a first and second diffusion region located on a first and second opposing sides of the gate stack. The storage capacitor comprises a first capacitor plate comprising a portion embedded within the substrate below the first diffusion region, a second capacitor plate and a capacitor dielectric sandwiched between the embedded portion of the first capacitor plate. At least a portion of the first diffusion region forms the second capacitor plate.
    Type: Application
    Filed: January 28, 2009
    Publication date: July 29, 2010
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Zhao LUN, James Yong Meng LEE, Lee Wee TEO, Shyue Seng TAN, Chung Woh LAI, Johnny WIDODO, Shailendra MISHRA, Jeffrey CHEE
  • Publication number: 20100184285
    Abstract: There is provided a method of fabrication an integrated circuit comprising providing a substrate with a bond pad formed thereover, the bond pad having a top surface for the formation of bonding connections. A passivation layer is provided over the bond pad followed by an overlying masking layer. The passivation layer is subsequently etched in accordance with the masking layer to form a patterned passivation layer with an opening that exposes a portion of the top surface of the bond pad. After etching the passivation layer, the mask layer is removed by a plasma resist strip followed by a wet solvent clean that removes etch residue from the passivation layer etch. Finally, a bond pad protective layer is grown over the surface of the bond pad. The bond pad may be composed of aluminum and the bond pad protective layer may be aluminum oxide.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 22, 2010
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Younan HUA, Shailesh REDKAR
  • Patent number: 7759207
    Abstract: An integrated circuit system that includes: providing a gate and a spacer formed over a substrate; performing an implant that amorphizes the gate and a source/drain region defined by the spacer; removing the spacer; depositing a stress memorization layer over the integrated circuit system; and transferring a stress from the stress memorization layer to the gate and the source/drain region.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: July 20, 2010
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Elgin Kiok Boone Quek, Pradeep Ramachandramurthy Yelehanka
  • Patent number: 7759206
    Abstract: A method of forming a semiconductor device that embeds an L-shaped spacer is provided. The method includes defining an L-shaped spacer on each side of a gate region of a substrate and embedding the L-shaped spacers in an oxide layer so that the oxide layer extends over a portion of the substrate a predetermined distance from a lateral edge of the L-shaped spacer. And removing oxide layers to expose the L-shape spacers.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: July 20, 2010
    Assignees: International Business Machines Corporation, Chartered Semiconductor Manufacturing Ltd.
    Inventors: Zhijiong Luo, Young Way Teh, Atul C. Ajmera
  • Patent number: 7749894
    Abstract: An integrated circuit processing system is provided including providing a substrate having an integrated circuit, forming an interconnect layer over the integrated circuit, applying a low-K dielectric layer over the interconnect layer, applying an ultra low-K dielectric layer over the low-K dielectric layer, forming an opening through the ultra low-K dielectric layer and the low-K dielectric layer to the interconnect layer, depositing an interconnect metal in the opening, and chemical-mechanical polishing the interconnect metal and the ultra low-K dielectric layer.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: July 6, 2010
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Xianbin Wang, Juan Boon Tan, Liang-Choo Hsia, Teck Jung Tang, Huang Liu
  • Publication number: 20100167505
    Abstract: A method for fabricating a semiconductor device is provided. The method comprises selectively forming a first layer over a first and second exposed portions of a substrate. The first and second exposed portions are of different sizes and are located adjacent to a first and second active devices. During the first layer formation, a gas mixture comprising first and second source gases that function as growth components for forming the first layer and a reactant gas that functions as an etching component for controlling selectivity of the first layer growth is provided. The reactant gas is different from the first and second source gases and one of first and second source gases forms the first layer at a faster rate over the first exposed portion as compared to the second exposed portion and the other source gas exhibits an opposite behavior.
    Type: Application
    Filed: December 29, 2009
    Publication date: July 1, 2010
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Han Guan CHEW, Jinping LIU, Alex Kai Hung SEE, Mei Sheng ZHOU
  • Patent number: 7745320
    Abstract: A method for forming silicide contacts in integrated circuits (ICs) is described. A spacer pull-back etch is performed during the salicidation process to reduce the stress between the spacer and source/drain silicide contact at the spacer undercut. This prevents the propagation of surface defects into the substrate, thereby minimizing the occurrence of silicide pipe defects. The spacer pull-back etch can be performed after a first annealing step to form the silicide contacts.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jeff Jianhui Ye, Huang Liu, Alex K H See, Wei Lu, Hai Cong, Hui Peng Koh, Mei Sheng Zhou, Liang Choo Hsia
  • Patent number: 7741719
    Abstract: An integrated circuit system comprised by forming a first region, a second region and a third region within a dielectric over a substrate. The first region includes tungsten plugs. The second region is formed adjacent at least a portion of the perimeter of the first region and the third region is formed between the first region and the second region. An opening is formed in the third region and a material is deposited within the opening for preventing erosion of the first region.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: June 22, 2010
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Dong Sheng Liu, Cing Ge Lim, Subbiah Chettiar Mahadevan, Feng Chen
  • Patent number: 7741187
    Abstract: Large tuning range junction varactor includes first and second junction capacitors coupled in parallel between first and second varactor terminals. First and second plates of the capacitors are formed by three alternating doped regions in a substrate. The second and third doped regions are of the same type sandwiching the first doped region of the second type. A first varactor terminal is coupled to the second and third doped regions and a second varactor terminal is coupled to the first doped region. At the interfaces of the doped regions are first and second depletion regions, the widths of which can be varied by varying the voltage across the terminals from zero to full reverse bias. At zero bias condition, junction capacitance (Cmax) is enhanced due to summation of two junction capacitances in parallel. At reverse bias condition, with the merging of the two junction depletion widths, the capacitor areas are drastically reduced, thereby reducing Cmin significantly.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: June 22, 2010
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventor: Manju Sarkar
  • Publication number: 20100148269
    Abstract: A device that includes a substrate with an active region is disclosed. The device includes a gate disposed in the active region and tunable sidewall spacers on sidewalls of the gate. A profile of the tunable sidewall spacers includes upper and lower portions in which width of the spacers in the upper portion is reduced at a greater rate than the lower portion.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 17, 2010
    Applicant: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Ramachandramurthy Pradeep YELEHANKA, Shailendra MISHRA, Sripad NAGARAD
  • Patent number: 7737029
    Abstract: Methods of forming devices include forming a first electrically insulating layer having a metal interconnection therein, on a substrate and then forming a first electrically insulating barrier layer on an upper surface of the metal interconnection and on the first electrically insulating layer. The first electrically insulating barrier layer is exposed to a plasma that penetrates the first electrically insulating barrier and removes oxygen from an upper surface of the metal interconnection. The barrier layer may have a thickness in a range from about 5 ? to about 50 ? and the plasma may be a hydrogen-containing plasma that converts oxygen on the upper surface of the metal interconnection to water.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: June 15, 2010
    Assignees: Samsung Electronics Co., Ltd., International Business Machines Corporation, Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jae-hak Kim, Griselda Bonilla, Steven E. Molis, Darryl D. Restaino, Hosadurga Shobha, Johnny Widodo
  • Patent number: 7727856
    Abstract: A first example embodiment comprises the following steps and the structure formed therefrom. A trench having opposing sidewalls is formed within a substrate. A stress layer having an inherent stress is formed over the opposing trench sidewalls. The stress layer having stress layer sidewalls over the trench sidewalls. Ions are implanted into one or more portions of the stress layer to form ion-implanted relaxed portions with the portions of the stress layer that are not implanted are un-implanted portions, whereby the inherent stress of the one or more ion-implanted relaxed portions of stress layer portions is relaxed.
    Type: Grant
    Filed: December 24, 2006
    Date of Patent: June 1, 2010
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Lee Wee Teo, Shiang Yang Ong, Jae Gon Lee, Vincent Leong, Elgin Quek, Dong Kyun Sohn
  • Patent number: 7721414
    Abstract: A method of manufacturing a 3-D spiral stacked inductor is provided having a substrate with a plurality of turns in a plurality of levels wherein the number of levels increases from an inner turn to the outer turn of the inductor. First and second connecting portions are respectively connected to an inner turn and an outermost turn, and a dielectric material contains the first and second connecting portions and the plurality of turns over the substrate.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: May 25, 2010
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Choon-Beng Sia, Kiat Seng Yeo, Shao-fu Sanford Chu, Cheng Yeow Ng, Kok Wai Chew, Wang Ling Goh
  • Patent number: 7718500
    Abstract: A structure and method for forming raised source/drain structures in a NFET device and embedded SiGe source/drains in a PFET device. We provide a NFET gate structure over a NFET region in a substrate and PFET gate structure over a PFET region. We provide NFET SDE regions adjacent to the NFET gate and provide PFET SDE regions adjacent to the PFET gate. We form recesses in the PFET region in the substrate adjacent to the PFET second spacers. We form a PFET embedded source/drain stressor in the recesses. We form a NFET S/D epitaxial Si layer over the NFET SDE regions and a PFET S/D epitaxial Si layer over PFET embedded source/drain stressor. The epitaxial Si layer over PFET embedded source/drain stressor is consumed in a subsequent salicide step to form a stable and low resistivity silicide over the PFET embedded source/drain stressor.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: May 18, 2010
    Assignees: Chartered Semiconductor Manufacturing, Ltd, International Business Machines Corporation (IBM), Samsung Electronics Co., Ltd.
    Inventors: Yung Fu Chong, Zhijiong Luo, Joo Chan Kim, Judson Robert Holt
  • Publication number: 20100120244
    Abstract: A method of forming an integrated circuit is disclosed. The method includes providing a substrate and forming on the substrate a shield structure comprising a shield member and a ground strap. The shield member comprises a non-metallic portion, and the ground strap comprises a metallic portion.
    Type: Application
    Filed: January 25, 2010
    Publication date: May 13, 2010
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Suh Fei LIM, Kok Wai CHEW, Sanford Shao-Fu CHU, Michael Chye Huat CHENG