Abstract: A method of forming an integrated circuit is disclosed. The method includes providing a substrate and forming on the substrate a shield structure comprising a shield member and a ground strap. The shield member comprises a non-metallic portion, and the ground strap comprises a metallic portion.
Abstract: A semiconductor device includes a dielectric layer in which an upper portion is densified. An interconnection is disposed in the dielectric layer. The densified portion reduces undercut during subsequent processing, improving reliability of the interconnection.
Abstract: A method for manufacturing an integrated circuit system that includes: providing a substrate including an active device; forming a drift region in the substrate, the drift region bounded in part by a top surface of the substrate and spaced apart from a source; and forming a drain above the drift region.
Abstract: An integrated circuit system that includes: providing a substrate including an active device; forming a trench within the substrate adjacent the active device; forming a first layer with a first lattice constant within the trench; and forming a second layer with a second lattice constant over the first layer, the second lattice constant differing from the first lattice constant.
Abstract: The present invention relates to integrated circuits. In particular, it relates to an IC comprising a receiving stage for receiving an input signal, an output stage for generating an output signal having a larger voltage range than the input signal and a level shifter. Embodiments of the invention provide a structure and a method for fabricating the IC wherein the level shifter is incorporated within the IC to improve reliability of the IC.
Abstract: An integrated circuit that includes a substrate having first and second active regions is disclosed. A first transistor of a first type and a second transistor of a second type are disposed in the first and second active regions respectively. Each transistor includes a gate stack having a metal gate electrode over a gate dielectric layer. First and second gate threshold voltage adjusting (GTVA) layers contacting first and second gate dielectric layer of the first and second transistors are provided. The first GTVA layer tunes a gate threshold voltage of the first transistor. A channel of the second transistor includes dopants to tune the gate threshold voltage of the second transistor.
Type:
Application
Filed:
October 29, 2008
Publication date:
April 29, 2010
Applicants:
CHARTERED SEMICONDUCTOR MANUFACTURING, LTD., INFINEON TECHNOLOGIES NORTH AMERICA CORP., FREESCALE SEMICONDUCTOR INC.
Inventors:
James Yong Meng LEE, Jin-Ping HAN, Voon-Yew THEAN
Abstract: A semiconductor device that includes a substrate having an active region prepared with a transistor is presented. The semiconductor device includes a stress structure adjacent to the substrate. The stress structure includes a dielectric layer having nanocrystals embedded therein. The nanocrystals induce a first or a second stress on a channel region of the transistor which improves carrier mobility of the transistor.
Abstract: A method for fabricating a semiconductor device is provided. The method comprising forming a first layer over a substrate and a second layer over the first layer. A patterned masking layer is subsequently provided over the second layer and a patterned second layer with outwardly tapered sidewalls is formed by isotropically etching exposed portions of the second layer. A patterned first layer is the formed by etching the first layer in accordance with the patterned second layer.
Abstract: A method for manufacturing an integrated circuit system includes: providing a first material; forming a second material over a first side of the first material; and exposing a second side of the first material to an energy source to form an electrical contact at an interface of the first material and the second material.
Abstract: An integrated circuit system that includes: providing a PFET device including a PFET gate and a PFET gate dielectric; forming a source/drain extension from a first epitaxial layer aligned to a first PFET gate sidewall spacer; and forming a source/drain from a second epitaxial layer aligned to a second PFET gate sidewall spacer.
Abstract: An integration approach to improve electromigration resistance in a semiconductor device is described. A via hole is formed in a stack that includes an upper dielectric layer, a middle TiN ARC, and a lower first metal layer and is filled with a conformal diffusion barrier layer and a second metal layer. A key feature is that the etch process can be selected to vary the shape and location of the via bottom. A round or partially rounded bottom is formed in the first metal layer to reduce mechanical stress near the diffusion barrier layer. On the other hand, a flat bottom which stops on or in the TiN ARC is selected when exposure of the first metal layer to subsequent processing steps is a primary concern. Electromigration resistance is found to be lower than for a via structure with a flat bottom formed in a first metal layer.
Abstract: Methods of forming integrated circuit device having electrical interconnects include forming an electrically insulating layer on a substrate and forming a hard mask on the electrically insulating layer. The hard mask and the electrically insulating layer are selectively etched in sequence using a mask to define an opening therein. This opening, which may be a via hole, exposes inner sidewalls of the hard mask and the electrically insulating layer. The inner sidewall of the hard mask is then recessed relative to the inner sidewall of the electrically insulating layer and a sacrificial reaction layer is formed on the inner sidewall of the electrically insulating layer. This reaction layer operates to recess the inner sidewall of the electrically insulating layer. The reaction layer is then removed to define a wider opening having relatively uniform sidewalls. This wider opening is then filled with an electrical interconnect.
Abstract: An example embodiment is a method of curing a film over a semiconductor structure. We provide a semiconductor structure comprised of a substrate and an interconnect structure. We provide a film over the semiconductor structure. We provide an electron source, an anode grid between the electron source and the semiconductor structure. We cure the film by exposing the film to an electron beam from the electron source that passes through the anode grid. We control the electron beam by controlling the bias voltage between the anode grid and the semiconductor structure. Another embodiment is a tool for curing a film.
Abstract: A first example embodiment provides a method of removing first spacers from gates and incorporating a low-k material into the ILD layer to increase device performance. A second example embodiment comprises replacing the first spacers after silicidation with low-k spacers. This serves to reduce the parasitic capacitances. Also, by implementing the low-k spacers only after silicidation, the embodiments' low-k spacers are not compromised by multiple high dose ion implantations and resist strip steps. The example embodiments can improve device performance, such as the performance of a rim oscillator.
Abstract: A method for forming a phase shift mask is presented. The method includes providing a substrate including a transparent material having first, second and third regions, the third region being disposed between the first and second regions. The method also includes forming a light reducing layer on a first major surface of the substrate. The light reducing layer is patterned to form a patterned light reducing layer having sidewalls defining openings to expose the first and second regions. The patterned light reducing layer is processed to transform the sidewalls of the patterned light reducing layer to angled sidewalls having an angle of less than 90° from a plane of the first major surface of the substrate. The angled sidewalls improve intensity balance of an image-formed by light-transmitted through the mask.
Abstract: A method for forming a semiconductor device is presented. A substrate prepared with a dielectric layer formed thereon is provided. A first upper etch stop layer is formed on the dielectric layer. The first upper etch stop layer includes a first dielectric material. The dielectric layer and first upper etch stop layer are patterned to form an interconnect opening. The interconnect opening is filled with a conductive material to form an interconnect. The interconnect and first upper etch stop layer have coplanar top surfaces. A second upper etch stop layer is formed over the coplanar top surfaces. The second upper etch stop layer includes a second material having sufficient adhesion with the first material to reduce diffusion of the conductive material.
Type:
Application
Filed:
September 4, 2008
Publication date:
March 4, 2010
Applicants:
CHARTERED SEMICONDUCTOR MANUFACTURING, LTD., INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Jing Hui LI, Wu Ping LIU, Lawrence A. CLEVENGER
Abstract: An efficient manufacturing automation system and method is described. The system and method include bays, with each bay having a group of tools. Temporary storage locations are provided. A transport system facilitates movement of materials from the tools. The system and method enable direct transfer of materials from a first tool to a second tool or transfer of materials from a first tool to a temporary storage location when a second tool is unavailable.
Abstract: A method to form a barrier layer and contact plug using a touch up RIE. In a first embodiment, we form a first barrier layer over the dielectric layer and the substrate in the contact hole. The first barrier layer is comprised of Ta. A second barrier layer is formed over the first barrier layer. The second barrier layer is comprised of TaN or WN. We planarize a first conductive layer to form a first contact plug in the contact hole. We reactive ion etch (e.g., W touch up etch) the top surfaces using a Cl and B containing etch. Because of the composition of the barrier layers and RIE etch chemistry, the barrier layers are not significantly etched selectively to the dielectric layer. In a second embodiment, a barrier film is comprised of WN.
Abstract: A method for forming a semiconductor device is presented. The method includes providing a substrate prepared with a dielectric layer formed thereon. The dielectric layer having a conductive line disposed in an upper portion of the dielectric layer. The substrate is processed to produce a top surface of the dielectric layer that is not coplanar with a top surface of the conductive line to form a stepped topography.
Abstract: A method for forming a device with both PFET and NFET transistors using a PFET compressive etch stop liner and a NFET tensile etch stop liner and two anneals in a deuterium containing atmosphere. The method comprises: providing a NFET transistor in a NFET region and a PFET transistor in a PFET region. We form a NFET tensile contact etch-stop liner over the NFET region. Then we perform a first deuterium anneal. We form a PFET compressive etch stop liner over the PFET region. We form a (ILD) dielectric layer with contact openings over the substrate. We perform a second deuterium anneal. The temperature of the second deuterium anneal is less than the temperature of the first deuterium anneal.
Type:
Application
Filed:
October 19, 2009
Publication date:
February 18, 2010
Applicants:
INTERNATIONAL BUSINESS MACHINES CORPORATION, CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
Inventors:
Khee Yong LIM, Victor CHAN, Eng Hua LIM, Wenhe LIN, Jamin F. FEN