Patents Assigned to Chipmos Technologies Inc.
  • Patent number: 8338938
    Abstract: A chip package device includes a substrate having a chip bonding area and at least one contact pad, a chip having an active surface and an inactive surface, at least one wire, an adhesive layer, a heat dissipation element, and an encapsulation. The chip is disposed on the chip bonding area with its inactive surface facing the substrate. The chip includes at least one bonding pad disposed on the active surface. The wire correspondingly connects the at least one bonding pad and the at least one contact pad. The adhesive layer covers the active surface of the chip and encloses a portion of the wire extending over the bonding pad. The heat dissipation element is attached to the adhesive layer and covers the chip. The encapsulation partially encloses the periphery of the assembly including the chip, the adhesive and the heat dissipation element, and has an indented opening to expose the surface of the heat dissipation element.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: December 25, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: Han Cheng Hsu, Ting Chang Yeh
  • Patent number: 8338935
    Abstract: A thermally enhanced electronic package comprises a chip, a substrate, an adhesive, and an encapsulation. The adhesive or the encapsulation is mixed with carbon nanocapsules. The substrate includes an insulation layer and a wiring layer formed on the substrate. The adhesive covers the chip and the substrate. The chip is electrically connected to the wiring layer. The encapsulation covers the chip and the substrate.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 25, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: An Hong Liu, David Wei Wang
  • Patent number: 8319337
    Abstract: A conductive structure for a semiconductor integrated circuit and method for forming the conductive structure are provided. The semiconductor integrated circuit has a pad and a passivation layer partially covering the pad to define a first opening portion having a first lateral size. The conductive structure electrically connects to the pad via the first opening portion. The conductive structure comprises a support layer defining a second opening portion. A conductor is formed in the second opening portion to serve as a bump having a planar top surface.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: November 27, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: Chung-Pang Chi, Cheng Tang Huang
  • Patent number: 8274150
    Abstract: A chip bump structure is formed on a substrate. The substrate includes at least one contact pad and a dielectric layer. The dielectric layer has at least one opening. The at least one opening exposes the at least one contact pad. The chip bump structure includes at least one elastic bump, at least one first metal layer, at least one second metal layer, and at least one solder ball. The at least one elastic bump covers a central portion of the at least one contact pad. The at least one first metal layer covers the at least one elastic bump. The at least one first metal layer has a portion of the at least one contact pad. The portion of the at least one contact pad is not overlaid by the at least one elastic bump. The at least one second metal layer is formed on a portion of the at least one first metal layer. The portion of the at least one first metal layer is located on the top of the at least one elastic bump. The at least one solder ball is formed on the at least one second metal layer.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: September 25, 2012
    Assignee: Chipmos Technologies Inc.
    Inventor: Cheng Tang Huang
  • Patent number: 8269352
    Abstract: A multi-chip stack package structure comprises a substrate, which has a chip placement area defined on its upper surface and a plurality of contacts disposed outside the chip placement area; a first chip is disposed in the chip placement area with the rear surface, a plurality of first pads being disposed on the active surface and a plurality of first bumps each being formed on one of the first pads; a plurality of metal wires connect the first bumps to the contacts; a second chip with a plurality of second pads being disposed on the active surface and a plurality of second bumps each being formed on one of the second pads, the second chip being mounted to the first chip with its active surface facing the active surface of the first chip, wherein the second bumps correspondingly connect the metal wires and the first bumps respectively.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: September 18, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: David Wei Wang, An-Hong Liu, Hsiang-Ming Huang, Jar-Dar Yang, Yi-Chang Lee
  • Patent number: 8269351
    Abstract: A multi-chip stack package structure comprises a substrate, which has a chip placement area defined on its upper surface and a plurality of contacts disposed outside the chip placement area; a first chip is disposed in the chip placement area with the rear surface, a plurality of first pads being disposed on the active surface and a plurality of first bumps each being formed on one of the first pads; a plurality of metal wires connect the first bumps to the contacts; a second chip with a plurality of second pads being disposed on the active surface and a plurality of second bumps each being formed on one of the second pads, the second chip being mounted to the first chip with its active surface facing the active surface of the first chip, wherein the second bumps correspondingly connect the metal wires and the first bumps respectively.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: September 18, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: David Wei Wang, An-Hong Liu, Hsiang-Ming Huang, Jar-Dar Yang, Yi-Chang Lee
  • Patent number: 8264068
    Abstract: A multi-chip stack package structure comprises a substrate, which has a chip placement area defined on its upper surface and a plurality of contacts disposed outside the chip placement area; a first chip is disposed in the chip placement area with the rear surface, a plurality of first pads being disposed on the active surface and a plurality of first bumps each being formed on one of the first pads; a plurality of metal wires connect the first bumps to the contacts; a second chip with a plurality of second pads being disposed on the active surface and a plurality of second bumps each being formed on one of the second pads, the second chip being mounted to the first chip with its active surface facing the active surface of the first chip, wherein the second bumps correspondingly connect the metal wires and the first bumps respectively.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: September 11, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: David Wei Wang, An-Hong Liu, Hsiang-Ming Huang, Jar-Dar Yang, Yi-Chang Lee
  • Patent number: 8253235
    Abstract: A semiconductor packaging substrate with improved capability of electrostatic dissipation comprises a dielectric layer, a plurality of leads, a plurality of first electrostatic guiding traces, a plurality of second electrostatic guiding traces and a solder mask. The first electrostatic guiding traces and the second electrostatic guiding traces are formed in pairs in a plurality of electrostatic dissipation regions on the dielectric layer, where each pair of the first and second electrostatic guiding traces are disposed in equal line spacing and are electrically isolated from each other. The solder mask partially covers the leads but exposes the first electrostatic guiding traces and the second electrostatic guiding traces. The first electrostatic guiding traces are connected to some of the leads to enhance protection against electrostatic discharge.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: August 28, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: Tsung Lung Chen, Ming Hsun Li
  • Patent number: 8245193
    Abstract: The present invention discloses an automatic method and system for generating and filtering out the innovation proposals. Particularly, it is about a system, which generates all the possible element code sets, compares them to the code sets of existing objects or documents, and then filters out the novel element code sets. The system comprises a standard element depository, a permutation and combination module, a testing object processing module, a matching module, a sifting module, and an output module.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: August 14, 2012
    Assignees: Chipmos Technologies Inc, Gainia Intellectual Asset Services, Inc
    Inventors: Chun-Fang Cheng, Geng-Shin Shen, Hui-Chung Che, Hou-Bai Lee
  • Patent number: 8237249
    Abstract: A stacked multichip package comprises a first chip having a first active surface and a first rear surface, a first chip carrier having a first opening and being configured to carrier the first active surface, a plurality of first conductive leads passing through the first opening and being configured to electrically connect the first active surface and the first chip carrier, a second chip having a second active surface and a second rear surface, an adhesive layer configured to enclose the first conductive leads and to electrically couple the first chip carrier to the second rear surface, a second chip carrier having a second opening and being electrically connected to the second active surface, and a plurality of conductive leads passing through the second opening and being configured to electrically connect the second active surface and the second chip carrier.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: August 7, 2012
    Assignee: Chipmos Technologies Inc.
    Inventor: Geng Hsin Shen
  • Patent number: 8207603
    Abstract: The present invention provides a stacked chip package structure with leadframe having inner leads with transfer pad, comprising: a leadframe composed of a plurality of inner leads arranged in rows facing each other, a plurality of outer leads, and a die pad, wherein the die pad is provided between the plurality of inner leads arranged in rows facing each other and vertically distant from the plurality of inner leads; an offset chip-stacked structure formed with a plurality of chips stacked together, the offest chip-stacked structure being set on the die pad and electrically connected to the plurality of inner leads arranged in rows facing each other; and an encapsulant covering the offset chip-stacked structure and the leadframe, the plurality of outer leads extending out of said encapsulant; the improvement of which being that the inner leads of the leadframe are coated with an insulating layer and a plurality of metal pads are selectively formed on the insulating layer.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: June 26, 2012
    Assignees: Chipmos Technologies Inc, Chipmos Technologies (Bermuda) Ltd
    Inventors: Geng-Shin Shen, Wu-Chang Tu
  • Patent number: 8169061
    Abstract: The present invention provides a chip-stacked package structure with leadframe having bus bar, comprising: a leadframe composed of a plurality of inner leads arranged in rows facing each other, a plurality of outer leads, and a die pad, wherein the die pad is provided between the plurality of inner leads and is vertically distant from the plurality of inner leads; a chip-stacked structure formed with a plurality of chips that stacked together and set on the die pad, the plurality of chips and the plurality of inner leads being electrically connected with each other; and an encapsulant covering over the chip-stacked package structure and the leadframe, in which the leadframe comprises at least a bus bar, which is provided between the plurality of inner leads arranged in rows facing each other and the die pad.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 1, 2012
    Assignees: Chipmos Technologies Inc, Chipmos Technologies (Bermuda) Ltd
    Inventors: Geng-Shin Shen, Wu-Chang Tu
  • Patent number: 8148827
    Abstract: The present invention relates to a quad flat no lead (QFN) package is provided. In the invention, a plurality of first pads are disposed outside an extension area of a conductive circuit layer, and a plurality of second pads are disposed inside a die bonding area of the conductive circuit layer, wherein the extension area surrounds the die bonding area. First ends of a plurality of traces are connected to the second pads, and second ends of the traces are located in the extension area. An insulating layer fills at least the die bonding area and the extension area, and exposes top surfaces and bottom surfaces of the second pads. A chip is mounted at the die bonding area and a plurality of wires electrically connect the chip to the first pads and the second ends of the traces respectively. An encapsulation material is used to cover the conductive circuit layer, the chip and the wires.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 3, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: Yu-Tang Pan, Shih-Wen Chou
  • Patent number: 8105876
    Abstract: A leadframe employed by a leadless package comprises a plurality of package units and an adhesive tape. Each of the package units has a die pad with a plurality of openings and a plurality of pins disposed in the plurality of openings. The adhesive tape is adhered to the surfaces of the plurality of package units and fixes the die pad and the plurality of pins.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 31, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: Chun Ying Lin, Geng Shin Shen, Yu Tang Pan, Shih Wen Chou
  • Patent number: 8106494
    Abstract: A leadframe employed by a leadless package comprises a plurality of package units and an adhesive tape. Each of the package units has a die pad with a plurality of openings and a plurality of pins disposed in the plurality of openings. The adhesive tape is adhered to the surfaces of the plurality of package units and fixes the die pad and the plurality of pins.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 31, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: Chun Ying Lin, Geng Shin Shen, Yu Tang Pan, Shih Wen Chou
  • Patent number: 8093106
    Abstract: This invention relates to a packaging structure and method for manufacturing the packaging structure. The packaging structure comprises a substrate film, a plurality of chips, a compound resin layer and a support layer. The substrate film is formed with circuits having a plurality of terminals exposed from a solder mask. The chips, each of which has a plurality of pads, under bump metals (UBMs) formed on the pads, and composite bumps disposed onto the UBMs, are bonded onto the substrate film to form the first tape. The second tape comprises the support layer and the compound resin layer formed on the support layer. The first tape and the second tape are both in reel-form and are expanded towards a pair of rollers to be heated and pressurized for encapsulating the chips.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 10, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: Jun-Yong Wang, Geng-Shin Shen
  • Publication number: 20110298124
    Abstract: A semiconductor structure is provided. By using a composite bump with replace of a gold bump, the consumption of gold can be reduced and the manufacturing cost can be decreased accordingly. Moreover, by using an encapsulation material formed on a metal layer, the heat transferring efficiency of the semiconductor structure can be improved and the stability thereof can be increased.
    Type: Application
    Filed: October 6, 2010
    Publication date: December 8, 2011
    Applicant: Chipmos Technologies Inc.
    Inventor: Geng-Shin Shen
  • Patent number: 8071471
    Abstract: A packaging conductive structure for a semiconductor substrate and a method for manufacturing the structure are provided. The structure comprises an under bump metal (UBM) that overlays a pad of the semiconductor substrate. At least one auxiliary component is disposed on the UBM. Then, a bump conductive layer is disposed thereon and a bump is subsequently formed on the bump conductive layer. Thus, the bump can electrically connect to the pad of the semiconductor substrate through the UBM and the bump conductive layer and can provide better junction buffer capabilities and conductivity.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: December 6, 2011
    Assignee: Chipmos Technologies Inc.
    Inventor: Jhong Bang Chyi
  • Patent number: 8058109
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, —including—the following steps of: forming a substrate having a package array; forming a thermosetting non-conductive layer covering the substrate; partially solidifying the thermosetting non-conductive layer to form a semi-solid non-conductive layer; connecting chips to the package array on the substrate; pressing and heating the chips and the substrate so that the semi-solid non-conductive layer adheres with the chips and the substrate; pre-heating an encapsulant preformed on a metal layer; covering the chips on the substrate with the encapsulant; and solidifying the encapsulant to completely cover the chips on the substrate. The present invention can reduce use of gold to lower the manufacturing cost and can also improve the heat conduction efficiency of the semiconductor structure to enhance operational stability of the chips.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: November 15, 2011
    Assignee: Chipmos Technologies Inc.
    Inventor: Geng-Shin Shen
  • Patent number: 8026615
    Abstract: An IC package primarily includes a chip, a plurality of electrical connecting components, and a chip carrier including a substrate, a die-attaching layer, and at least one bonding wire. The substrate has a top surface and a bottom surface wherein the top surface includes a die-attaching area for being disposed with the die-attaching layer. The chip is attached to the die-attaching area by the die-attaching layer and is electrically connected to the substrate by the electrical connecting components. Both ends of the bonding wire are bonded respectively to two interconnecting fingers on the top surface of the substrate, and at least a portion of the bonding wire is encapsulated in the die-attaching layer such that some wirings or vias formed on a conventional substrate are not needed. Therefore, the substrate can have a simpler structure and fewer numbers of wiring layers; consequently, the substrate cost can be reduced.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: September 27, 2011
    Assignee: Chipmos Technologies Inc.
    Inventors: Hung Tsun Lin, Wu Chang Tu, Cheng Ting Wu