Patents Assigned to Cree, Inc.
  • Patent number: 10734560
    Abstract: A device for an LED has a substrate and a circuit on the substrate configured to accept the LED. The circuit includes a first set of electrical traces terminating at a first set of solder pads for a first sized LED, a second set of electrical traces terminating at a second set of solder pads for a second sized LED different from the first sized LED, and peripheral electrical traces for electrically interconnecting electrical traces of the first set of electrical traces or between electrical traces of the second set of electrical traces. Connection components electrically interconnect the first set of electrical traces with each other or the electrical traces of the second set of electrical traces with each other, respectively, at corresponding solder pads. The device is configurable to provide a first voltage and a second voltage to the LED.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: August 4, 2020
    Assignee: Cree, Inc.
    Inventors: David N. Randolph, Ryan C. Mohn
  • Patent number: 10734363
    Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, a light extraction surface of each substrate portion includes protruding features and light extraction surface recesses. Lateral borders between different pixels are aligned with selected light extraction surface recesses. In some aspects, selected light extraction surface recesses extend through an entire thickness of the substrate. Other technical benefits may additionally or alternatively be achieved.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: August 4, 2020
    Assignee: CREE, INC.
    Inventor: Peter Scott Andrews
  • Patent number: 10720379
    Abstract: The base of an integrated circuit package comprises a first side, and a second side opposing the first side. The base further comprises, a base mounting section, a die mounting section, and a recessed section. The recessed section comprises a recess between the die mounting section and the base mounting section. The base further comprises an opening extending through the base from the first side to the second side. At least a portion of the recess intersects with the opening.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 21, 2020
    Assignee: CREE, INC.
    Inventors: Sung Chul Joo, Bradley Millon, Erwin Cohen
  • Patent number: 10707858
    Abstract: A power module includes a first terminal, a second terminal, and a number of semiconductor die coupled between the first terminal and the second terminal. The semiconductor die are configured to provide a low-resistance path for current flow from the first terminal to the second terminal during a forward conduction mode of operation and a high-resistance path for current flow from the first terminal to the second terminal during a forward blocking configuration. Due to improvements made to the power module, it is able to pass a temperature, humidity, and bias test at 80% of its rated voltage for at least 1000 hours.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: July 7, 2020
    Assignee: Cree, Inc.
    Inventors: Mrinal K. Das, Adam Barkley, Brian Fetzer, Jonathan Young, Van Mieczkowski, Scott Allen
  • Patent number: 10707386
    Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: July 7, 2020
    Assignee: Cree, Inc.
    Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
  • Patent number: 10692998
    Abstract: A transistor includes a plurality of gate fingers that extend in a first direction and are spaced apart from each other in a second direction, each of the gate fingers comprising at least spaced-apart and generally collinear first and second gate finger segments that are electrically connected to each other. The first gate finger segments are separated from the second gate finger segments in the first direction by a gap region that extends in the second direction. A resistor is disposed in the gap region.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: June 23, 2020
    Assignee: Cree, Inc.
    Inventors: Khaled Fayed, Simon Wood
  • Patent number: 10686107
    Abstract: Light emitter devices, components and methods are disclosed. In one aspect, a light emitter component of a light emitter device is disclosed. The light emitter component can include a silver (Ag) portion at least partially disposed over a surface of the component. The component can further include a protective layer at least partially disposed over the Ag portion, the protective layer at least partially including an organic barrier material that increases or improves chemical resistance of the Ag portion. In some aspects, the protective layer includes a polyxylylene (e.g., poly(p-xylylene), a substituted poly(p-xylylene), a fluorocarbon containing poly(p-xylylene), and/or any other polymer prepared from a xylylene and/or comprising —CH2—(C6H4)—CH2— based repeating units. In some aspects, the protective layer includes Parylene.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: June 16, 2020
    Assignee: Cree, Inc.
    Inventors: Shaow B. D. Lin, Peter Scott Andrews
  • Patent number: 10683971
    Abstract: Solid state lighting components are provided with improved color rendering, improved color uniformity, and improved directional lighting, and that are suitable for use in high output lighting applications and can be used in place of CDMH bulb lighting. Exemplary solid state lighting components include a substrate comprising a light emitter surface and or more light emitters disposed on and/or over the light emitter surface. Exemplary components include a light directing optic and/or a diffusing optic for mixing light. The light directing optic may be disposed at least partially around a perimeter of the light emitter surface. The diffusing optic may be disposed between portions of the light directing optic and spaced apart from the light emitter surface.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: June 16, 2020
    Assignee: Cree, Inc.
    Inventors: Florin A. Tudorica, Christopher P. Hussell, John Wesley Durkee, Peter Scott Andrews, Mark Cash, David Randolph
  • Publication number: 20200185572
    Abstract: A stabilized fluoride phosphor for light emitting diode (LED) applications includes a particle comprising manganese-activated potassium fluorosilicate and an inorganic coating on each of the particles. The inorganic coating comprises a silicate. A method of making a stabilized fluoride phosphor comprises forming a reaction mixture that includes particles comprising a manganese-activated potassium fluorosilicate; a reactive silicate precursor; a catalyst; a solvent; and water in an amount no greater than about 10 vol. %. The reaction mixture is agitated to suspend the particles therein. As the reactive silicate precursor undergoes hydrolysis and condensation in the reaction mixture, an inorganic coating comprising a silicate is formed on the particles. Thus, a stabilized fluoride phosphor is formed.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 11, 2020
    Applicant: Cree, Inc.
    Inventors: Ryan Gresback, Kenneth Lotito, Linjia Mu
  • Patent number: 10680518
    Abstract: A power converter module includes an active metal braze (AMB) substrate, power converter circuitry, and a housing. The AMB substrate includes an aluminum nitride base layer, a first conductive layer on a first surface of the aluminum nitride base layer, and a second conductive layer on a second surface of the aluminum nitride base layer opposite the first surface. The power converter circuitry includes a number of silicon carbide switching components coupled to one another via the first conductive layer. The housing is over the power converter circuitry and the AMB substrate. By using an AMB substrate with an aluminum nitride base layer, the thermal dissipation characteristics of the power converter module may be substantially improved while maintaining the structural integrity of the power converter module.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: June 9, 2020
    Assignee: Cree, Inc.
    Inventors: Mrinal K. Das, Adam Barkley, Henry Lin, Marcelo Schupbach
  • Patent number: 10672957
    Abstract: Light emitting diode (LED) apparatuses and methods having a high lumen output density. An example apparatus can include a substrate with one or more LEDs enclosed by an encapsulant. The encapsulant comprises beveled edges and/or top surface facets. By providing facets in the encapsulant and minimizing the chip-to-area ratio through efficient via placement, a high lumen density is achieved. Facets and bevels can be created by removing material from the encapsulant with a beveled blade.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: June 2, 2020
    Assignee: Cree, Inc.
    Inventors: Troy Gould, Colin Kelly Blakely, Jesse Colin Reiherzer, Craig William Hardin
  • Patent number: 10666207
    Abstract: The operative bandwidth of a broadband RF amplifier is improved by using a low-pass type broadband impedance transformer, instead of a broadband matching network, in a multi-stage impedance matching network connected, e.g., to the amplifier input. The multi-stage impedance matching network comprises three stages connected in series. The first stage is a low-pass type broadband impedance transformer that provides broadband fundamental impedances and high reflection for the second harmonics. The second stage is a phase shifter that controls the location of the second harmonic reflection coefficient phases. The third stage is a high-pass input matching circuit that transforms the complex conjugate device input impedance to a real impedance.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: May 26, 2020
    Assignee: Cree, Inc.
    Inventors: Haedong Jang, Richard Wilson, Björn Herrmann, Zulhazmi Mokhti
  • Patent number: 10658546
    Abstract: Simplified LED chip architectures or chip builds are disclosed that can result in simpler manufacturing processes using fewer steps. The LED structure can have fewer layers than conventional LED chips with the layers arranged in different ways for efficient fabrication and operation. The LED chips can comprise an active LED structure. A dielectric reflective layer is included adjacent to one of the oppositely doped layers. A metal reflective layer is on the dielectric reflective layer, wherein the dielectric and metal reflective layers extend beyond the edge of said active region. By extending the dielectric layer, the LED chips can emit with more efficiency by reflecting more LED light to emit in the desired direction. By extending the metal reflective layer beyond the edge of the active region, the metal reflective layer can serve as a current spreading layer and barrier, in addition to reflecting LED light to emit in the desired direction.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: May 19, 2020
    Assignee: Cree, Inc.
    Inventors: Matthew Donofrio, Pritish Kar, Sten Heikman, Harshad Golakia, Rajeev Acharya, Yuvaraj Dora
  • Patent number: 10651168
    Abstract: Embodiments of an RF amplifier package include a body section comprising an upper surface having first and second opposing edge sides, and a die pad vertically recessed beneath the upper surface and comprising first and second opposing sides and a third side intersecting with the first and second sides. Embodiments also include first and second leads disposed on the upper surface, the second lead extending from adjacent to the second side to the second edge side; and a biasing strip connected to the second lead and disposed on the upper surface adjacent to the third side. Other embodiments include packaged RF amplifiers comprising an RF amplifier package, and an RF transistor mounted on the die pad and comprising: a control terminal electrically coupled to the first lead, a reference potential terminal directly facing and electrically connected to the die pad, and an output terminal electrically connected to the second lead.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: May 12, 2020
    Assignee: Cree, Inc.
    Inventors: Timothy Canning, Bjoern Herrmann, Richard Wilson
  • Patent number: 10651357
    Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, a light extraction surface of each substrate portion includes protruding features and light extraction surface recesses. Lateral borders between different pixels are aligned with selected light extraction surface recesses. In some aspects, selected light extraction surface recesses extend through an entire thickness of the substrate. Other technical benefits may additionally or alternatively be achieved.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: May 12, 2020
    Assignee: CREE, INC.
    Inventor: Peter Scott Andrews
  • Patent number: 10651351
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs) and more particularly LED packages are disclosed. A light-altering material may be provided in particular configurations within an LED package to redirect light toward a primary emission direction. The light-altering material may be arranged on any of a first face, a second face, or a plurality of sidewalls of an LED chip in the LED package. In certain embodiments, a lumiphoric material may be arranged on one or more of the sidewalls. A superstrate may be arranged to mechanically support the LED chip from the first face. The light-altering material may be arranged on or dispersed within the superstrate. In certain embodiments, the primary emission direction of the LED package is substantially parallel to the second face of the LED chip in the LED package. An overall thickness or height of the LED package may be less than or equal to 0.25 mm.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 12, 2020
    Assignee: Cree, Inc.
    Inventor: Christopher P. Hussell
  • Patent number: 10611052
    Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: April 7, 2020
    Assignee: Cree, Inc.
    Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
  • Patent number: 10615135
    Abstract: A multi-cell transistor includes a semiconductor structure, a plurality of unit cell transistors that are electrically connected in parallel, each unit cell transistor extending in a first direction in the semiconductor structure, wherein the unit cell transistors are spaced apart from each other along a second direction, and an isolation structure that is positioned between a first group of the unit cell transistors and a second group of the unit cell transistors and that extends above the semiconductor structure.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: April 7, 2020
    Assignee: Cree, Inc.
    Inventors: Frank Trang, Qianli Mu, Haedong Jang, Zulhazmi Mokhti
  • Patent number: D890961
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: July 21, 2020
    Assignee: Cree, Inc.
    Inventors: Jesse Colin Reiherzer, Colin Kelly Blakely, Samuel Richard Harrell, Jr., Erin R. F. Welch, Roshan Murthy
  • Patent number: D892066
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: August 4, 2020
    Assignee: Cree, Inc.
    Inventors: Jesse Reiherzer, Jeremy Nevins, Joseph Clark