Abstract: A refrigerant compressor has a control valve for controlling the degree of conveyance of the refrigerant compressor by setting a drive housing pressure pC of the refrigerant compressor. A control body controls a conveying-side control line between a discharge chamber, acted upon by high pressure of the compressor, and the drive housing of the compressor, and also controls a suction-side control line between the drive housing and a suction chamber, acted upon by suction pressure of the compressor variably in a throttling and/or shutting-off manner. The control body is driven electromagnetically. To improve the refrigerating capacity and the control behavior of the refrigerating system, the control body, which can shut off both the conveying-side and the suction-side control line, is also driven by means of a pressure cell.
Abstract: In a hydrogen reservoir having a housing with a hydrogen storage material arranged in the housing for absorbing and releasing hydrogen as needed, the hydrogen reservoir includes at least one unit having a porous body surrounding a container in which the hydrogen storage material is contained and a method is provided for charging the hydrogen reservoir with hydrogen from a hydrogen filling stations.
Type:
Grant
Filed:
October 27, 2008
Date of Patent:
May 24, 2011
Assignee:
Daimler, AG
Inventors:
Daniel Gölz, Claude Keller, Wolfgang Polifke, Eberhard Schmidt-Ihn, David Wenger
Abstract: In a method for regenerating a nitrogen oxide storage catalytic converter arranged in an exhaust pipe of an internal combustion engine, a constant value is set in a first regeneration phase for the air/fuel ratio ?M of the air/fuel mixture fed to the internal combustion engine when a predeterminable triggering threshold value for the nitrogen oxide concentration in the exhaust gas on the output side of the nitrogen oxide storage catalytic converter is exceeded. The first regeneration phase is followed by a second regeneration phase, in which the time rate of change d ?M/dt of the air/fuel ratio ?M is set as a function of the mass flow of the exhaust gas flowing through the nitrogen oxide storage catalytic converter or as a function of an internal combustion engine operating variable linked with the mass flow of exhaust gas.
Abstract: In a system with an SCR catalytic converter, a correction by a changeable long term adaption factor to a target dosing rate is provided for the model dosing rate and a correction by a changeable short term adaption factor to an assumed actual filling state for the ammonia filling level value. A dosing unit controllable by a control unit adds an ammonia-containing reducing agent to the exhaust gas and n exhaust gas enriched with ammonia according to the dosing is fed to the SCR catalytic converter. An ammonia filling level value for a filling level of ammonia stored in the SCR catalytic converter and a model dosing rate for dosing the reducing agent into the exhaust gas are calculated by a computer model.
Type:
Application
Filed:
July 22, 2009
Publication date:
May 19, 2011
Applicant:
Daimler AG
Inventors:
Bernd Christner, Uwe Hofmann, Alexander Kaiser, Markus Paule
Abstract: An individual cell for a battery comprises an electrode stack disposed within a cell housing and a method for the production thereof. The individual electrodes, preferably electrode foils, are electrically connected to lead vanes, and at least electrodes of different polarity are separated and insulated from each other by a separator preferably a separator foil. Lead vanes of the same polarity are electrically connected to each other to form a pole. The lead vanes of a pole are electrically compressed with each other and/or welded to each other.
Abstract: A method for operating an exhaust gas treatment system that includes an SCR catalytic converter is provided. Either a model-based filling level regulation for achieving the target filling level or a model-based efficiency control for achieving the target efficiency is performed according to presettable values for certain operating variables such as a temperature of the exhaust gas or of the SCR catalytic converter.
Abstract: In an injection system having a device for metering fuel into an exhaust system of a Diesel engine, and a method for controlling the injection of fuel into the exhaust system, wherein the injection system has a high-pressure pump which feeds fuel to an accumulator under high pressure and injectors which inject fuel from the accumulator into the combustion chambers of the internal combustion engine, a fuel spray nozzle arranged in the exhaust system is in communication with the injection system via a fuel metering unit including a control valve and a metering valve and a pressure regulating valve is arranged between the control valve and the metering valve for controlling the pressure of the fuel being metered by the metering valve for injection into the exhaust system via the spray nozzle.
Abstract: In a gear shift module for an automatic transmission of a motor vehicle including a series of gear shift elements for example in the form of gear shift forks, which are operated for the shifting of gears, a gear shift module is provided which has a module baseplate forming part of the cylinders of piston-cylinder units and at least part of a housing of a countershaft brake and a central clutch disengager of a starting clutch. These parts can be manufactured jointly providing for lower manufacturing and assembly costs.
Abstract: In a method for operating a direct-injection auto-ignition internal combustion engine and a correspondingly configured internal combustion engine including a piston top having integrally formed therein a piston recess which merges into an essentially annular stepped space and an injector forming injection jets directed toward the stepped space, the jets are deflected there in such a way that a first part quantity of fuel is directed in an axial direction and a radial direction into the piston recess, a second part quantity of fuel is deflected in the axial direction and the radial direction over the piston top and third part quantities of fuel are deflected into a circumferential direction so as to impinge one onto the other in the circumferential direction and to be deflected radially inwardly, the start of injection and the injection duration being coordinated with one another and with the crank angle of the internal combustion engine in such a way that the third part quantities of adjacent injection jets m
Abstract: In a control for a motor vehicle transmission having a clutch and means for establishing and/or releasing an engagement of a toothing or of jaws of the motor vehicle transmission including a control unit for actuating the clutch for transmitting a torque to a first component of the toothing, the control unit being adapted, for the purpose of releasing a tooth-on-tooth position of the toothing, to briefly provide a control signal for adjusting the clutch to a desired clutch position (KS) in order to generate a torque pulse, the control unit determining a reaction of the motor vehicle transmission in response to the control signal from the control unit and adapting the desired clutch position (KS) as a function of the reaction.
Type:
Grant
Filed:
September 17, 2007
Date of Patent:
May 17, 2011
Assignee:
Daimler, AG
Inventors:
Ulrich Bartels, Manfred Guggolz, Werner Hillenbrand, Erwin Schneeberger
Abstract: A method for manufacturing a lightweight valve is provided. The lightweight valve includes a valve stem, a hollow valve cone and a valve disk closing the valve cone, the valve stem being provided with a hollow space at an end facing the valve disk, the valve disk also having a force transmission element extending through the hollow valve cone into the stem hollow space. The method includes producing a first one-piece component forming the valve disk with the force transmission element by casting, forming and/or a powder metallurgy method, producing a second component forming the valve stem and the valve cone and joining the first and second components together and connecting them by a material, non-positive and/or positive connection.
Abstract: The present invention relates to a method for influencing the transversal dynamics of a vehicle (1), wherein a transversal dynamics disturbance variable acting on the vehicle (1), and particularly on the vehicle body, is detected by means of a disturbance variable determination device (5) and a counter-yaw moment counteracting the transversal dynamics disturbance variable is produced, comprising the following method steps: detecting the dynamic transversal dynamics disturbance variable by means of the disturbance variable determination device (5), producing a first counter-yaw moment in order to at least partially compensate for the dynamic transversal dynamics disturbance variable with the help of a first vehicle system (4, 3.1, 3.2, 3.3, 3.
Type:
Application
Filed:
January 27, 2009
Publication date:
May 12, 2011
Applicant:
Daimler AG
Inventors:
Jens Kalkkuhl, Daniel Keppler, Magnus Rau, Avshalom Suissa
Abstract: A cooling arrangement for cooling a temperature-sensitive assembly, (such as an electrical assembly) of a motor vehicle includes a condenser for liquefying at least a partial volume of a cooling medium in a cooling circuit, and an evaporator disposed downstream of the condenser on which the cooling medium can impinge and to which heat from the electrical assembly (12) can be applied. The cooling arrangement comprises a pump device by which the evaporator can be charged by at least the liquefied partial volume of the cooling medium. A method for cooling a temperature-sensitive assembly, such an electrical assembly, of a motor vehicle is also provided.
Abstract: A small molecule or polymer additive can be used in preparation of a membrane electrode assembly to improve its durability and performance under low relative humidity in a fuel cell. Specifically, a method of forming a membrane electrode assembly comprising a proton exchange membrane, comprises providing an additive comprising at least two nitrogen atoms to the membrane electrode assembly.
Abstract: With many coated sheets, in particular zinc-coated sheets as used in the automobile industry, the coating material has a much lower boiling point than the material of the sheet. On welding said sheets together the above leads to explosive evaporation of coating material which seriously affects the quality of the connection. In order to improve the quality of the connection it has already been disclosed that narrow gaps between the sheets can be produced by means of spacers, through which the coating material can escape. The spacers can be produced for example, by means of laser bombardment of the sheets. A disadvantage is the relatively long time necessary for machining, which causes large costs in particular for serial production. The aim of the invention is to reduce the time necessary for machining the sheets whilst at least maintaining, preferably improving the quality of the machining.
Type:
Grant
Filed:
September 3, 2003
Date of Patent:
May 10, 2011
Assignee:
Daimler AG
Inventors:
Daniel Zauner, Claus-Dieter Reiniger, Wolfgang Becker, Klaus Goth, Mike Paelmer
Abstract: In many cases, the coating material of coated sheet metal has a significantly lower boiling point than the sheet metal material. Thus, an explosive vaporization of coating material can occur when sheet metal of this type is joined by welding, negatively affecting the quality of the connection. To improve the connection quality, narrow gaps are created by means of spacers, allowing the vaporized coating material to escape through said gaps. The spacers are created e.g. by the laser radiation of the sheet metal. The aim of the invention is to reduce the variations in distance between the sheet metal sheets by the appropriate shaping of the spacers. This is achieved by a method, in which the laser beam executes a movement comprising transverse and longitudinal components through and/or around the center of its processing surface. This creates a topographical modification with a spherical form, i.e. with an apex radius that is greater than the height of said topographical modification.
Type:
Grant
Filed:
January 27, 2005
Date of Patent:
May 10, 2011
Assignee:
Daimler AG
Inventors:
Wolfgang Becker, Jens Bühler, Klaus Goth, Mike Palmer, Claus-Dieter Reiniger, Daniel Zauner