Patents Assigned to Dartmouth College
  • Patent number: 11307656
    Abstract: View-through sensors each locatable proximate to an eye of a user and for use while the user is engaged in viewing activity. Each view-through sensor has a view-through region that allows the user to view through the sensor. An active peripheral region at least partially surrounds the view-through region and includes multiple light-sensing regions for sensing light reflected from an eye. In some embodiments, the view-through sensor is configured to use environmental light for eye tracking. When the view-through sensor uses environmental light, spatial and temporal information about the intensity of the environmental light can be used to enhance eye-tracking performance. This information can be obtained, for example, from light-sensing regions on the reverse side of the view-through sensor, from an electronic display, or from a forward-facing camera. In some embodiments, the view-through sensor includes light-emitting regions that emit the light that the sensor uses to track eye movement.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: April 19, 2022
    Assignee: Trustees of Dartmouth College
    Inventors: Tianxing Li, Qiang Liu, Xia Zhou
  • Patent number: 11301605
    Abstract: A disclosed circuit prototyping system includes a hardware interface module configured for electronically connecting to a physical electronic device, a virtual circuit design interface to construct a virtual circuit for a plurality of virtual circuit devices including a virtual counterpart of the physical electronic device, and a circuit simulator configured to simulate the virtual circuit including communicating data with the physical electronic device by way of communication with the hardware interface module.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: April 12, 2022
    Assignee: Trustees of Dartmouth College
    Inventors: Te-Yen Wu, Jun Gong, Alemayehu Seyed, Xing-Dong Yang
  • Patent number: 11246845
    Abstract: The present specification provides RXR agonist compounds, compositions comprising such RXR agonists, and methods using such compounds and compositions to treat an autoimmune disorder, inflammation associated with an autoimmune disorder and/or a transplant rejection as well as use of such RXR agonists to manufacture a medicament and use of such compounds and compositions to treat an autoimmune disorder, inflammation associated with an autoimmune disorder and/or a transplant rejection.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: February 15, 2022
    Assignees: Io Therapeutics, Inc., Trustees of Dartmouth College
    Inventors: Roshantha A. Chandraratna, Ethan Dmitrovsky, Elizabeth Nowak, Randolph Noelle
  • Patent number: 11155801
    Abstract: Unglycosylated lysostaphin variant protein, nucleic acid molecule, vector and host cell, as well as a method for production of unglycosylated lysostaphin variant protein in a yeast expression system are provided. The proteins are produced in a Pichia pastoris expression system and have been shown to have activity equivalent to wild-type lysostaphin. The lysostaphin variant proteins can be used as therapeutic proteins for treatment of diseases such as Staphylococcus aureus infection.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: October 26, 2021
    Assignee: Trustees of Dartmouth College
    Inventors: Karl E. Griswold, Hongliang Zhao
  • Patent number: 11153026
    Abstract: Apparatuses that provide for secure wireless communications between wireless devices under cover of one or more jamming signals. Each such apparatus includes at least one data antenna and at least one jamming antenna. During secure-communications operations, the apparatus transmits a data signal containing desired data via the at least one data antenna while also at least partially simultaneously transmitting a jamming signal via the at least one jamming antenna. When a target antenna of a target device is in close proximity to the data antenna and is closer to the data antenna than to the jamming antenna, the target device can successfully receive the desired data contained in the data signal because the data signal is sufficiently stronger than the jamming signal within a finite secure-communications envelope due to the Inverse Square Law of signal propagation. Various related methods and machine-executable instructions are also disclosed.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: October 19, 2021
    Assignee: Trustees of Dartmouth College
    Inventors: Timothy J. Pierson, Ronald Peterson, David F. Kotz
  • Publication number: 20210310971
    Abstract: In some embodiments, the present disclosure pertains to a bimetallic metal-organic framework. In some embodiments, the bimetallic metal-organic framework includes a plurality of first metals and a plurality of metal-containing ligands, where each metal-containing ligand includes a second metal and a ligand. In some embodiments, the ligand is coordinated with the second metal and at least one first metal. In some embodiments, the present disclosure pertains to a method of detecting an analyte in a sample by associating the sample with a bimetallic metal-organic framework, as disclosed herein, detecting a change in a property of the bimetallic metal-organic framework, and correlating the change in the property of the bimetallic metal-organic framework to the presence or absence of the analyte in the sample. In some embodiments, the present disclosure pertains to a method of making the bimetallic metal-organic frameworks disclosed herein.
    Type: Application
    Filed: August 19, 2019
    Publication date: October 7, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Zheng Meng, Aylin Aykanat
  • Publication number: 20210299242
    Abstract: Embodiments of immunogens comprising a recombinant Nipah virus (NiV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also provided are embodiments of immunogens comprising chimeric proteins comprising the recombinant NiV F ectodomain trimer and one or more G ectodomains, a multimer of NiV G ectodomains, and protein nanoparticles comprising the recombinant NiV F ectodomain trimer or an NiV G ectodomain. Also disclosed are nucleic acids encoding the immunogens and methods of their production. Methods for inducing an immune response in a subject by administering a disclosed immunogen to the subject are also provided. In some embodiments, the immune response treats or inhibits NiV infection in a subject.
    Type: Application
    Filed: August 5, 2019
    Publication date: September 30, 2021
    Applicants: The United States of America, as represented by the Secretary, Department of Health and Human Servic, Trustees of Dartmouth College
    Inventors: Barney Graham, Rebecca Loomis, Guillaume Stewart-Jones, John Mascola, Jason McLellan
  • Publication number: 20210275664
    Abstract: Coronavirus S ectodomain trimers stabilized in a prefusion conformation, nucleic acid molecules and vectors encoding these proteins, and methods of their use and production are disclosed. In several embodiments, the coronavirus S ectodomain trimers and/or nucleic acid molecules can be used to generate an immune response to coronavirus in a subject. In additional embodiments, the therapeutically effective amount of the coronavirus S ectodomain trimers and/or nucleic acid molecules can be administered to a subject in a method of treating or preventing coronavirus infection.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 9, 2021
    Applicants: The United States of America, as represented by the Secretary, Department of Health and Human Servic, The Scripps Research Institute, Trustees of Dartmouth College
    Inventors: Barney Graham, Jason McLellan, Andrew Ward, Robert Kirchdoerfer, Christopher Cottrell, Michael Gordon Joyce, Masaru Kanekiyo, Nianshuang Wang, Jesper Pallesen, Hadi Yassine, Hannah Turner, Kizzmekia Corbett
  • Publication number: 20210262970
    Abstract: In some embodiments, the present disclosure pertains to methods of detecting an analyte in a sample by associating the sample with an electrode that includes a metal-organic framework. After association, the redox properties of the electrode are evaluated. Thereafter, the presence or absence of the analyte in the sample is detected by correlating the redox properties of the electrode to the presence or absence of the analyte. In some embodiments, the present disclosure pertains to electrodes that include a metal-organic framework and an electrode surface. In particular embodiments of the present disclosure, the metal-organic framework is associated with the electrode surface. Additional embodiments of the present disclosure pertain to methods of making the electrodes of the present disclosure by associating a metal-organic framework with an electrode surface. In some embodiments, the methods of the present disclosure also include a step of mixing the metal-organic framework with a polymer.
    Type: Application
    Filed: June 21, 2019
    Publication date: August 26, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz K. Mendecki, Michael Ko, Zheng Meng, Robert M. Stolz, Aileen Eagleton
  • Publication number: 20210252773
    Abstract: In an aspect, the present disclosure pertains to a method of making a material. Generally, the method includes one or more of the following steps of: (1) placing a mixture having one or more components in a container; and (2) extruding the mixture out of at least one opening of at least one nozzle. In an additional aspect, the present disclosure pertains to a material. In some embodiments, the material includes one or more components. In some embodiments, the one or more components are in the form of a multi-layered structure.
    Type: Application
    Filed: February 15, 2021
    Publication date: August 19, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Ulrike G. K. Wegst, Kaiyang Yin, Claire Adner, Peyton Weber, Amalie Hildebrandt Brynjulfsson
  • Publication number: 20210230191
    Abstract: In some embodiments, the present disclosure pertains to a method of forming metalorganic frameworks. In some embodiments, the method includes exposing a plurality of zerooxidation state metal atoms to an oxidizing agent. In some embodiments, the exposing facilitates oxidation of the plurality of zero-oxidation state metal atoms to a plurality of metallic ions. In some embodiments, the plurality of metallic ions react with a plurality of ligands to form the metal-organic frameworks. In some embodiments, the formed metal-organic frameworks comprise one or more metals and one or more ligands coordinated with the one or more metals.
    Type: Application
    Filed: June 6, 2019
    Publication date: July 29, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz K. Mendecki, Michael KO
  • Publication number: 20210220665
    Abstract: While clinical treatment of actinic keratosis by photodynamic therapy (PDT) is widely practiced, there is well-known variability in response, primarily caused by heterogeneous accumulation and PDT-induced photobleaching of the photosensitizer protoporphyrin IX (PpIX) between patients and between lesions. One of the key factors in regularizing this treatment would be to have an easily accessible indicator of PpIX present in the lesions at the time of light delivery. Described herein, a smartphone-based fluorescence imager was developed to allow simple quantitative photography of the lesions and their PpIX levels.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 22, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Alberto J. RUIZ, Ethan P.M. LAROCHELLE, Brian POGUE
  • Patent number: 11034767
    Abstract: Provided herein, in some embodiments, are antibodies, antigen-binding antibody fragments, chimeric antigen receptors (CARs) and bispecific T cell engagers (BiTEs) that bind specifically to B7 homolog 6. Also provided herein are methods of using the same and cells comprising the same.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: June 15, 2021
    Assignee: Trustees of Dartmouth College
    Inventors: Margaret Ackerman, Casey Hua, Charles Sentman
  • Publication number: 20210171668
    Abstract: Provided are supramolecular polypseudorotaxane hydrogel compositions and 3-D structures capable of reversible 3-D structural deformation which include (a) a solvent; (b) an at least partially linear polymer, where the polymer further comprises groups capable of covalent crosslinking between the polymers; (ii) at least one first macrocyclic ring which forms a pseudorotaxane with a polymer in the polymer network; and (iii) at least one second macrocyclic ring that does not form the pseudorotaxane. The hydrogel composition has a viscosity which allows for 3-D printing of the hydrogel to form a 3-D structure, and a storage (elastic) modulus after crosslinking that allows for the 3-D structure to undergo reversible 3-D structural deformation upon change of solvent conditions. Also provided are methods of manufacturing the compositions and 3-D structures.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 10, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Chenfeng Ke, Qianming Lin
  • Publication number: 20210164930
    Abstract: Embodiments of the present disclosure pertain to ion-selective electrodes that include a metal-organic framework and an electrode surface. The metal-organic framework is associated with the electrode surface in a manner that forms an interface between the metal-organic framework and the electrode surface. Additional embodiments pertain to methods of detecting an ion in a sample by associating the sample with the ion-selective electrodes of the present disclosure. The metal-organic frameworks of the ion-selective electrodes mediate ion-to-electron transduction through the interface between the metal-organic and the electrode surface. Thereafter, the presence or absence of the ion in the sample is detected by detecting a change in potential of the ion-selective electrode and correlating the change in the potential to the presence or absence of the ion.
    Type: Application
    Filed: August 13, 2018
    Publication date: June 3, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Lukasz K. Mendecki
  • Publication number: 20210162320
    Abstract: In some embodiments, the present disclosure pertains to a method for capturing alkenes that includes: associating the alkenes with metal-organic frameworks, where the metal-organic frameworks includes one or more metals and one or more ligands coordinated with the one or more metals, and where the metal-organic frameworks are conductive; and oxidizing the metal-organic frameworks, where the oxidizing results in a capturing of the alkenes by the metal-organic frame-works. Additional embodiments of the present disclosure pertain to a system for capturing alkenes that includes: metal-organic frameworks, where the metal-organic frameworks include one or more metals and one or more ligands coordinated with the one or more metals, and where the metal-organic frameworks are conductive; and an alkene feed source associated with the metal-organic frameworks, where the alkene feed source is configured to deliver an alkene feed to the system.
    Type: Application
    Filed: August 9, 2018
    Publication date: June 3, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Katherine A. Mirica, Xiaoping Zhan, Lukasz K. Mendecki, Zheng Meng, Michael Ko
  • Publication number: 20210117600
    Abstract: A disclosed circuit prototyping system includes a hardware interface module configured for electronically connecting to a physical electronic device, a virtual circuit design interface to construct a virtual circuit for a plurality of virtual circuit devices including a virtual counterpart of the physical electronic device, and a circuit simulator configured to simulate the virtual circuit including communicating data with the physical electronic device by way of communication with the hardware interface module.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Te-Yen WU, Jun GONG, Alemayehu SEYED, Xing-Dong YANG
  • Patent number: 10960070
    Abstract: Coronavirus S ectodomain trimers stabilized in a prefusion conformation, nucleic acid molecules and vectors encoding these proteins, and methods of their use and production are disclosed. In several embodiments, the coronavirus S ectodomain trimers and/or nucleic acid molecules can be used to generate an immune response to coronavirus in a subject. In additional embodiments, the therapeutically effective amount of the coronavirus S ectodomain trimers and/or nucleic acid molecules can be administered to a subject in a method of treating or preventing coronavirus infection.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: March 30, 2021
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, The Scripps Research Institute, Trustees of Dartmouth College
    Inventors: Barney Graham, Jason McLellan, Andrew Ward, Robert Kirchdoerfer, Christopher Cottrell, Michael Gordon Joyce, Masaru Kanekiyo, Nianshuang Wang, Jesper Pallesen, Hadi Yassine, Hannah Turner, Kizzmekia Corbett
  • Publication number: 20210079134
    Abstract: In an embodiment, the present disclosure pertains to a method of changing the glass transition temperature of a polymer. In some embodiments, the polymer includes at least one hydrazone-containing compound. In general, the methods of the present disclosure include one or more of the following steps of: (1) applying light to the polymer; and (2) thereby changing the glass transition temperature of the polymer. In another embodiment, the present disclosure pertains to a polymer having a light-adjustable glass transition temperature. In some embodiments, the polymer includes at least one hydrazone-containing compound.
    Type: Application
    Filed: September 10, 2020
    Publication date: March 18, 2021
    Applicant: Trustees of Dartmouth College
    Inventors: Ivan Aprahamian, Sirun Yang, Laura L. Jeliazkov, Jared D. Harris
  • Patent number: 10945976
    Abstract: The present specification provides RXR agonist compounds, compositions comprising such RXR agonists, and methods using such compounds and compositions to treat an autoimmune disorder, inflammation associated with an autoimmune disorder and/or a transplant rejection as well as use of such RXR agonists to manufacture a medicament and use of such compounds and compositions to treat an autoimmune disorder, inflammation associated with an autoimmune disorder and/or a transplant rejection.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 16, 2021
    Assignees: Io Therapeutics, Inc., Trustees of Dartmouth College
    Inventors: Roshantha A. Chandraratna, Ethan Dmitrovsky, Elizabeth Nowak, Randolph Noelle