Patents Assigned to eMemory Technology Inc.
  • Patent number: 11610103
    Abstract: A one time programmable non-volatile memory cell includes a storage element. The storage element includes a glass substrate, a buffer layer, a polysilicon layer and a metal layer. The buffer layer is disposed on the glass substrate. The polysilicon layer is disposed on the buffer layer. A P-type doped region and an N-type doped region are formed in the polysilicon layer. The metal layer is contacted with the N-type doped region and the P-type doped region. The metal layer, the N-type doped region and the P-type doped region are collaboratively formed as a diode. When a program action is performed, the first diode is reverse-biased, and the diode is switched from a first storage state to a second storage state. When a read action is performed, the diode is reverse-biased and the diode generates a read current.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: March 21, 2023
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Wein-Town Sun, Woan-Yun Hsiao
  • Patent number: 11605438
    Abstract: Provided is a memory device including a memory structure including a substrate, a channel region, first and second doped regions, a floating gate and a dielectric layer. The channel region is disposed on the substrate. The first and the second doped regions are disposed on the substrate and respectively located at two sides of the channel region. The floating gate is disposed on the channel region. The dielectric layer is disposed between the floating gate and the channel region, the first doped region and the second doped region. The floating gate and the first doped region are partially overlapped, and/or the floating gate and the second doped region are not overlapped and a sidewall of the floating gate adjacent to the second doped region and a boundary between the second doped region and the channel region are separated by a distance.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: March 14, 2023
    Assignee: eMemory Technology Inc.
    Inventor: Ting-Ting Su
  • Patent number: 11569252
    Abstract: A method for manufacturing a semiconductor structure includes forming a first dielectric layer on a substrate; forming a second dielectric layer on the first dielectric layer; using a photomask to apply a photoresist to cover a first part of the second dielectric layer; removing a second part of the second dielectric layer while retaining the first part of the second dielectric layer; and removing the photoresist. The first part of the second dielectric layer covers a first part of the first dielectric layer in a first area. The second part of the second dielectric layer covers a second part of the first dielectric layer in a second area. The first area is corresponding to a memory device. The second area is corresponding to a logic device.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: January 31, 2023
    Assignee: eMemory Technology Inc.
    Inventor: Te-Hsun Hsu
  • Patent number: 11557338
    Abstract: A non-volatile memory includes a cell array, a current supply circuit, a path selecting circuit, a verification circuit and a control circuit. During a sample period of a verification action, the control circuit controls the current supply circuit to provide n M-th reference currents to the verification circuit and convert the n M-th reference currents into n reference voltages. During a verification period of the verification action, the control circuit controls n multi-level memory cells of a selected row of the cell array to generate n cell currents to the verification circuit and convert the n cell currents into n sensed voltages. The n verification devices generate the n verification signals according to the reference voltages and the sensed voltages. Accordingly, the control circuit judges whether the n multi-level memory cells have reached an M-th storage state.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: January 17, 2023
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Chia-Fu Chang, Wei-Ming Ku, Ying-Je Chen
  • Patent number: 11551738
    Abstract: A memory device includes a well, a poly layer, a dielectric layer, an alignment layer and an active area. The poly layer is formed above the well. The dielectric layer is formed above the poly layer. The alignment layer is formed on the dielectric layer, used to receive an alignment layer voltage and substantially aligned with the dielectric layer in a projection direction. The active area is formed on the well. The dielectric layer is thicker than the alignment layer. A first overlap area of the poly layer and the active area is smaller than a second overlap area of the poly layer and the dielectric layer excluding the first overlap area.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: January 10, 2023
    Assignee: eMemory Technology Inc.
    Inventors: Chia-Jung Hsu, Wei-Ren Chen, Wein-Town Sun
  • Patent number: 11521980
    Abstract: A read-only memory cell array includes a first storage state memory cell and a second storage state memory cell. The first storage state memory cell includes a first transistor and a second transistor. The first transistor is connected to a source line and a word line. The second transistor is connected to the first transistor and a first bit line. The second storage state memory cell includes a third transistor and a fourth transistor. The third transistor is connected to the source line and the word line. The fourth transistor is connected to the third transistor and a second bit line. A gate terminal of the fourth transistor is connected to a gate terminal of the third transistor.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: December 6, 2022
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventor: Wein-Town Sun
  • Patent number: 11521050
    Abstract: A control circuit for a neural network system includes a first multiply accumulate circuit, a first neuron value storage circuit and a first processor. The first multiply accumulate circuit includes n memristive cells. The first terminals of the n memristive cells receive a supply voltage. The second terminals of the n memristive cells are connected with a first bit line. The control terminals of the n memristive cells are respectively connected with n word lines. Moreover, n neuron values of a first layer are stored in the first neuron value storage circuit. In an application phase, the first neuron value storage circuit controls the n word lines according to binary codes of the n neuron values. The first processor generates a first neuron value of a second layer.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: December 6, 2022
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Chia-Fu Chang, Cheng-Heng Chung, Ching-Yuan Lin
  • Patent number: 11517231
    Abstract: A blood glucose test strip includes a base substrate, a calibration site, a test site and a non-volatile memory. The calibration site is disposed on the base substrate. A chemical reagent is applied on the calibration site. The test site is disposed on the base substrate. A chemical reagent is applied on the test site. The non-volatile memory is disposed on the base substrate. A calibration parameter is stored in the non-volatile memory. During a calibrating procedure, the calibration solution is dropped on the calibration site, a calibration parameter is calculated according to a first reaction result of the calibration solution and the chemical reagent, and the calibration parameter is stored in the non-volatile memory.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: December 6, 2022
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventor: Hsin-Chou Liu
  • Patent number: 11508425
    Abstract: A memory cell of a memory cell array includes a well region, a first doped region, a second doped region, a first gate structure, and a storage structure. The first doped region and the second doped region are formed in the well region. The first gate structure is formed over a first surface between the first doped region and the second doped region. The storage structure is formed over a second surface and the second surface is between the first surface and the second doped region. The storage structure is covered on a portion of the first gate structure, the second surface and an isolation structure.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: November 22, 2022
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Chia-Jung Hsu, Wein-Town Sun
  • Patent number: 11508719
    Abstract: An ESD circuit is connected between an I/O pad and a first node. The ESD circuit includes a bi-directional buck circuit, a triggering circuit and a discharging circuit. The bi-directional buck circuit includes a forward path and a reverse path. The forward path and the reverse path are connected between the I/O pad and a second node. The triggering circuit is connected between the second node and the first node. The discharging circuit is connected between the second node and the first node, and connected with the triggering circuit. When the I/O pad receives negative ESD zap, the ESD current flows from the first node to the I/O pad through the discharging circuit and the reverse path. When the I/O pad receives positive ESD zap, the ESD current flows from the I/O pad to the first node through the forward path and the discharging circuit.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: November 22, 2022
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Yun-Jen Ting, Chih-Wei Lai, Yi-Han Wu, Kun-Hsin Lin, Hsin-Kun Hsu
  • Patent number: 11508720
    Abstract: A memory device includes a well, a first gate layer, a second gate layer, a doped region, a blocking layer and an alignment layer. The first gate layer is formed on the well. The second gate layer is formed on the well. The doped region is formed within the well and located between the first gate layer and the second gate layer. The blocking layer is formed to cover the first gate layer, the first doped region and a part of the second gate layer and used to block electrons from excessively escaping. The alignment layer is formed on the blocking layer and above the first gate layer, the doped region and the part of the second gate layer. The alignment layer is thinner than the blocking layer, and the alignment layer is thinner than the first gate layer and the second gate layer.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: November 22, 2022
    Assignee: eMemory Technology Inc.
    Inventors: Chia-Jung Hsu, Wei-Ren Chen, Wein-Town Sun
  • Patent number: 11508435
    Abstract: A charge pump apparatus including a first charge pump system, a second charge pump system, a switch transistor, and a voltage regulation circuit is provided. The first charge pump system converts a first supply voltage into a first boost voltage. The second charge pump system converts a second supply voltage into a second boost voltage. The switch transistor is coupled to the first charge pump system and the second charge pump system, and outputs an output voltage according to the second boost voltage. The switch transistor includes a control terminal receiving the second boost voltage, a first terminal receiving the first boost voltage, and a second terminal outputting the output voltage. The voltage regulation circuit controls the second charge pump system according to the output voltage to adjust the second boost voltage so that the output voltage approaches to a target output value.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: November 22, 2022
    Assignee: eMemory Technology Inc.
    Inventors: Chia-Fu Chang, Sung-Ling Hsieh
  • Patent number: 11502096
    Abstract: A memory device includes a first well, a second well, a first active area, a second active area, a third active area, a first poly layer and a second poly layer. The first well is of a first conductivity type. The second well is of a second conductivity type different from the first conductivity type. The first active area is of the second conductivity type and is formed on the first well. The second active area is of the first conductivity type and is formed on the first well and between the first active area and the second well. The third active area is of the first conductivity type and is formed on the second well. The first poly layer is formed above the first well and the second well. The second poly layer is formed above the first well.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: November 15, 2022
    Assignee: eMemory Technology Inc.
    Inventors: Chia-Jung Hsu, Wein-Town Sun
  • Publication number: 20220352191
    Abstract: A method for manufacturing a semiconductor structure includes forming a first oxide layer on a wafer; forming a silicon nitride layer on the first oxide layer; forming a plurality of trenches; filling an oxide material in the trenches to form a plurality of shallow trench isolation regions; removing the silicon nitride layer without removing the first oxide layer; using a photomask to apply a photoresist for covering a first part of the first oxide layer on a first area and exposing a second part of the first oxide layer on a second area; and removing the second part of the first oxide layer while remaining the first part of the first oxide layer.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Applicant: eMemory Technology Inc.
    Inventors: Wein-Town Sun, Chun-Hsiao Li
  • Patent number: 11462903
    Abstract: An ESD circuit includes a voltage division circuit, a RC control circuit and a voltage selection circuit. The voltage division circuit is connected between a first power pad and a first node, and generates a first voltage. The RC control circuit is connected between the first power pad and a second power pad, and generates a second voltage and a third voltage. The voltage selection circuit receives the first voltage and the second voltage, and outputs a fourth voltage. The first transistor and the second transistor are serially connected between the first power pad and the second power pad. A gate terminal of the first transistor receives the first voltage. A gate terminal of the second transistor receives the third voltage. The third transistor is connected with the first power pad and an internal circuit. A gate terminal of the third transistor receives the fourth voltage.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: October 4, 2022
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Chih-Wei Lai, Yun-Jen Ting, Yi-Han Wu, Kun-Hsin Lin, Hsin-Kun Hsu
  • Patent number: 11436478
    Abstract: A control circuit for a neural network system includes a first multiply accumulate circuit, a first neuron value storage circuit and a first processor. The first multiply accumulate circuit includes n memristive cells. The first terminals of the n memristive cells receive a supply voltage. The second terminals of the n memristive cells are connected with a first bit line. The control terminals of the n memristive cells are respectively connected with n word lines. Moreover, n neuron values of a first layer are stored in the first neuron value storage circuit. In an application phase, the first neuron value storage circuit controls the n word lines according to binary codes of the n neuron values. The first processor generates a first neuron value of a second layer.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: September 6, 2022
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Chia-Fu Chang, Cheng-Heng Chung, Ching-Yuan Lin
  • Patent number: 11424257
    Abstract: A method for manufacturing a semiconductor structure includes forming a first oxide layer on a wafer; forming a silicon nitride layer on the first oxide layer; forming a plurality of trenches; filling an oxide material in the trenches to form a plurality of shallow trench isolation regions; removing the silicon nitride layer without removing the first oxide layer; using a photomask to apply a photoresist for covering a first part of the first oxide layer on a first area and exposing a second part of the first oxide layer on a second area; and removing the second part of the first oxide layer while remaining the first part of the first oxide layer.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: August 23, 2022
    Assignee: eMemory Technology Inc.
    Inventors: Wein-Town Sun, Chun-Hsiao Li
  • Patent number: 11416416
    Abstract: A random code generator includes a differential cell array, a power supply circuit, a first selecting circuit and a current judgment circuit. The power supply circuit receives an enrolling signal and a feedback signal. The first selecting circuit receives a first selecting signal. When the enrolling signal is activated and an enrollment is performed on the first differential cell, the power supply circuit provides an enrolling voltage, and the enrolling voltage is transmitted to a first storage element and a second storage element of the first differential cell through the first selecting circuit. Consequently, the cell current is generated. When a magnitude of the cell current is higher than a specified current value, the current judgment circuit activates the feedback signal, so that the power supply circuit stops providing the enrolling voltage.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: August 16, 2022
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventors: Tsung-Mu Lai, Chun-Fu Lin, Chun-Chieh Chao
  • Publication number: 20220246758
    Abstract: A switch device includes a P-type substrate, a first gate structure, a first N-well, a shallow trench isolation structure, a first P-well, a second gate structure, a first N-type doped region, a second P-well, and a second N-type doped region. The first N-well is formed in the P-type substrate and partly under the first gate structure. The shallow trench isolation structure is formed in the first N-well and under the first gate structure. The first P-well is formed in the P-type substrate and under the first gate structure. The first N-type doped region is formed in the P-type substrate and between the first gate structure and the second gate structure. The second P-well is formed in the P-type substrate and under the second gate structure. The second N-type doped region is formed in the second P-well and partly under the second gate structure.
    Type: Application
    Filed: April 15, 2022
    Publication date: August 4, 2022
    Applicant: eMemory Technology Inc.
    Inventors: Chih-Hsin Chen, Shih-Chen Wang, Tsung-Mu Lai, Wen-Hao Ching, Chun-Yuan Lo, Wei-Chen Chang
  • Patent number: 11404958
    Abstract: A random code generator includes a power source, a sensing circuit, a first memory cell and a second memory cell. A first terminal of the first memory cell is connected with the power source. A second terminal of the first memory cell is connected with the sensing circuit. A first terminal of the second memory cell is connected with the power source. A second terminal of the second memory cell is connected with the sensing circuit. The power source provides a supplying voltage to both the first memory cell and the second memory cell during an enrollment. A random code is then determined according to the resistance difference between the first memory cell and the second memory cell after the enrollment.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: August 2, 2022
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventor: Ching-Hsiang Hsu