Patents Assigned to Endicott Interconnect Technologies, Inc.
  • Publication number: 20120152605
    Abstract: A circuitized substrate and method of making same in which quantities of thru-holes are formed within a dielectric interposer layer. The substrate includes two printed circuit board (PCB) layers bonded to opposing sides of the interposer with electrically conductive features of each PCB aligned with the interposer thru-holes. Resistive paste is positioned on the conductive features located adjacent the thru-holes to form controlled electrically resistive connections between conductive features of the two PCBs. A circuitized substrate assembly and method of making same are also disclosed.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 21, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Rabindra N. Das, John M. Lauffer, Voya R. Markovich, James J. McNamara, JR.
  • Patent number: 8196281
    Abstract: A spring actuated clamping mechanism has a backer plate with an upper surface and a lower surface. A set of apertures is formed along the periphery of the backer plate. The upper surface of the backer plate has at least one backer plate recess, and preferably four recesses, formed therein. A threaded aperture is also formed in the backer plate. A compression plate is also provided. A second set of apertures is formed along the periphery of the compression plate. The lower surface of the compression plate has at least one compression plate recess, and at least one compression plate aperture. At least one compression spring is disposed between the backer plate and the compression plate. A screw tension release mechanism is screwed into the backer plate threaded aperture and inserted through the compression plate aperture.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: June 12, 2012
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Benson Chan, Matthew J. Lauffer
  • Patent number: 8198551
    Abstract: A power core adapted for use as part of a circuitized substrate, e.g., a PCB or LCC. The core includes a first layer of low expansion dielectric and two added layers of a different low expansion dielectric bonded thereto, with two conductive layers positioned on the two added low expansion dielectric layers. At least one of the conductive layers serves as a power plane for the power core, which in turn is usable within a circuitized substrate, also provided. Methods of making the power core and circuitized substrate are also provided. The use of different low expansion dielectric materials for the power core enables the use of support enhancing fiberglass in one layer while such use is precluded in the other two dielectric layers, thus preventing CAF shorting problems in highly precisely defined thru holes formed within the power core.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: June 12, 2012
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Robert M. Japp, Kostas Papathomas, John Steven Kresge, Timothy Antesberger
  • Patent number: 8198739
    Abstract: A method of forming a compressible contact structure on a semi-conductor chip which comprises bonding a compressible polymer layer to the chip's surface, forming a plurality of openings within the layer, depositing electrically conductive material within the openings to form electrical connections with the chip's contacts, forming a plurality of electrically conductive line elements on the polymer layer extending from a respective opening and each including an end portion, and forming a plurality of contact members each on a respective one of the line segment end portions. The compressible polymer layer allows the contact members to deflect toward (compress) the chip when the contact members are engaged by an external force or forces. A semi-conductor chip including such a compressible contact structure is also provided.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: June 12, 2012
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: How Lin, Frank Egitto, Voya Markovich
  • Publication number: 20120112345
    Abstract: A high bandwidth semiconductor printed circuit board assembly (PCBA) providing a layer of dielectric substrate containing plated vias with an upper and lower surface plated with etched copper, mated with a second layer of etched copper plated dielectric containing plated vias that is placed on the top surface of the first layer. A third layer of etched copper plated dielectric containing plated vias may be placed on the bottom layer of etched copper foil. A base layer of etched copper plated thick dielectric containing plated vias is laminated simultaneously with the preceding layers to provide the high bandwidth digital and RF section of the assembly.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 10, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: Kim J. Blackwell, Frank D. Egitto, Voya R. Markovich
  • Patent number: 8143530
    Abstract: A substrate and method for making same for use in electronic packages having a core layer of copper-invar-copper (CIC) with a layer of polytetrafluoroethylene (PTFE) placed upon both sides of the CIC. A layer of etched copper foil is placed on the outer surface of each PTFE layer. A layer of liquid crystal polymer (LCP) is placed on both layers of etched copper foil. An external layer of etched copper foil is placed on the external surface of the LCP layers.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: March 27, 2012
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Michael Rowlands
  • Patent number: 8144480
    Abstract: A multi-layer imbedded capacitance and resistance substrate core. At least one layer of resistance material is provided. The layer of resistance material has a layer of electrically conductive material embedded therein. At least one layer of capacitance material of high dielectric constant is disposed on the layer of resistance material. Thru-holes are formed by laser.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: March 27, 2012
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, John M. Lauffer, Irving Memis, Steven G. Rosser
  • Publication number: 20120069288
    Abstract: A substrate and method for making same for use in electronic packages having a core layer of copper-invar-copper (CIC) with a layer of polytetrafluoroethylene (PTFE) placed upon both sides of the CIC. A layer of etched copper foil is placed on the outer surface of each PTFE layer. A layer of liquid crystal polymer (LCP) is placed on both layers of etched copper foil. An external layer of etched copper foil is placed on the external surface of the LCP layers.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 22, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Rabindra Das, Michael Rowlands
  • Publication number: 20120068326
    Abstract: A tamper-resistant microchip package contains fluid- or nanofluid-filled capsules, channels, or reservoirs, wherein the fluids, either alone or in combination, can destroy circuitry by etching, sintering, or thermally destructing when reverse engineering of the device is attempted. The fluids are released when the fluid-filled cavities are cut away for detailed inspection of the microchip. Nanofluids may be used for the sintering process, and also to increase the thermal conductivity of the fluid for die thermal management. Through-vias and micro vias may be incorporated into the design to increase circuitry destruction efficacy by improving fluid/chip contact. Thermal interface materials may also be utilized to facilitate chip cooling.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 22, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Rabindra N. Das, Voya R. Markovich, James J. McNamara, JR., Mark D. Poliks
  • Publication number: 20120069531
    Abstract: A conducting paste and method of forming the paste for device level interconnection. The conducting paste contains metal loading in the range 80-95% that is useful for making five micron device level interconnects. The conducting paste is made by mixing two different conducting pastes, each paste maintaining its micro level individual rich region in the mixed paste even after final curing. One paste contains at least one low melting point alloy and the other paste contains noble metal fillers such as gold or silver flakes. In general, average flake size below five micron is suitable for five micron interconnects. However, 1 micron or smaller silver flakes and an LMP mixture is preferred for five micron interconnects. The amount of LMP based paste in the final mixture is preferably 20-50% by weight. The nano micro paste embodiment shows good electrical yield (81%) and low contact resistance.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 22, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Rabindra N. Das, Roy H. Magnuson, Mark D. Poliks, Voya R. Markovich
  • Publication number: 20120031649
    Abstract: A substrate for use in a PCB or PWB board having a coreless buildup layer and at least one metal and at least one dielectric layer. The coreless buildup dielectric layers can consist of at least partially cured thermoset resin and thermoplastic resin. The substrate may also contain land grid array (LGA) packaging.
    Type: Application
    Filed: April 22, 2010
    Publication date: February 9, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Timothy Antesberger, Rabindra N. Das, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Publication number: 20120017437
    Abstract: A circuitized substrate which includes a conductive paste for providing electrical connections. The paste, in one embodiment, includes a metallic component including nano-particles and may include additional elements such as solder or other metal micro-particles, as well as a conducting polymer and organic. The particles of the paste composition sinter and, depending on what additional elements are added, melt as a result of lamination to thereby form effective contiguous circuit paths through the paste. A method of making such a substrate is also provided, as is an electrical assembly utilizing the substrate and including an electronic component such as a semiconductor chip coupled thereto.
    Type: Application
    Filed: October 4, 2011
    Publication date: January 26, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Rabindra N. Das, Kostas I. Papathomas, Voya R. Markovich
  • Publication number: 20120012553
    Abstract: A method for making a leadless chip carrier (LCC) for use in electronic packages having a core layer stripped of copper cladding, containing drilled clearance holes within, a layer of resin coated copper (RCC) placed on the upper surface of the core layer and a second layer of RCC placed on the lower surface of the core layer. The layers are laminated together with the RCC filling the clearance holes during lamination. A pattern is etched on the RCC and vias are drilled through the filled clearance holes and pre-plated with seed copper layers. The seed copper layers in the vias are then covered by a layer of copper plating to meet the requirements of the core buildup layer, and resin inhibiting conductive anodic filament (CAF) growth within the structure.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: Robert M. Japp, Kostas I. Papathomas, Cheryl Palomaki
  • Publication number: 20120015532
    Abstract: A flexible, high density decal and the use thereof methods of forming detachable electrical interconnections between a flexible chip carrier and a printed wiring board. The flexible decal has fine-pitch pads on a first surface and pads of a pitch wider than the fine pitch on a second surface, the fine-pitch pads on the first surface designed to electrically connect to a semiconductor device, and the wider-pitch pads on the second surface designed to electrically connect to a printed wiring board or the like. The pads on the first surface are conductively wired to the pads on the second surface through one or more insulating levels in the flexible decal.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: Voya R. Markovich, Ronald V. Smith, How T. Lin, Frank D. Egitto, Rabindra N. Das, William E. Wilson, Rajinder S. Rai
  • Patent number: 8084863
    Abstract: A circuitized substrate including a dielectric layer having a p-aramid paper impregnated with a halogen-free, low moisture absorptivity resin and not including continuous or semi-continuous fiberglass fibers as part thereof, and a first circuitized layer positioned on the dielectric layer. A method of making this substrate is also provided.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: December 27, 2011
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Robert M. Japp, Voya R. Markovich, Kostas I. Papathomas, Mark D. Poliks
  • Publication number: 20110284273
    Abstract: A power core adapted for use as part of a circuitized substrate, e.g., a PCB or LCC. The core includes a first layer of low expansion dielectric and two added layers of a different low expansion dielectric bonded thereto, with two conductive layers positioned on the two added low expansion dielectric layers. At least one of the conductive layers serves as a power plane for the power core, which in turn is usable within a circuitized substrate, also provided. Methods of making the power core and circuitized substrate are also provided. The use of different low expansion dielectric materials for the power core enables the use of support enhancing fiberglass in one layer while such use is precluded in the other two dielectric layers, thus preventing CAF shorting problems in highly precisely defined thru holes formed within the power core.
    Type: Application
    Filed: May 18, 2010
    Publication date: November 24, 2011
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Robert M. Japp, Kostas Papathomas, John S. Kresge, Timothy Antesberger
  • Patent number: 8063315
    Abstract: A circuitized substrate which includes a conductive paste for providing electrical connections. The paste, in one embodiment, includes a metallic component including nano-particles and may include additional elements such as solder or other metal micro-particles, as well as a conducting polymer and organic. The particles of the paste composition sinter and, depending on what additional elements are added, melt as a result of lamination to thereby form effective contiguous circuit paths through the paste. A method of making such a substrate is also provided, as is an electrical assembly utilizing the substrate and including an electronic component such as a semiconductor chip coupled thereto.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: November 22, 2011
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Rabindra N. Das, Kostas I. Papathomas, Voya R. Markovich
  • Publication number: 20110260299
    Abstract: A semiconductor printed circuit board assembly (PCBA) and method for making same for use in electronic packages having a core layer of copper-invar-copper (CIC) with a layer of dielectric substrate placed on the core layer. A second layer of dielectric substrate is placed on the lower surface of the core layer of CIC. The layers are laminated together. Blind vias are laser drilled into the layers of dielectric substrate. The partially completed PCBA is subjected to a reactive ion etch (RIE) plasma as a first step to clean blind vias in the PCBA. After the plasma etch, an acidic etchant liquid solution is used on the blind vias. Pre-plating cleaning of blind vias removes a majority of oxides from the blind vias. Seed copper layers are then applied to the PCBA, followed by a layer of copper plating that can be etched to meet the requirements of the PCBA.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Robert D. Edwards, Frank D. Egitto, Luis J. Matienzo, Susan Pitely, Daniel C. Van Hart
  • Patent number: 8028390
    Abstract: A spring actuated clamping mechanism has a backer plate with an upper surface and a lower surface. A set of apertures is formed along the periphery of the backer plate. The upper surface of the backer plate has at least one backer plate recess, and preferably four recesses, formed therein. A threaded aperture is also formed in the backer plate. A compression plate is also provided. A second set of apertures is formed along the periphery of the compression plate. The lower surface of the compression plate has at least one compression plate recess, and at least one compression plate aperture. At least one compression spring is disposed between the backer plate and the compression plate. A screw tension release mechanism is screwed into the backer plate threaded aperture and inserted through the compression plate aperture.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: October 4, 2011
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Benson Chan, Matthew J. Lauffer
  • Publication number: 20110197430
    Abstract: A spring actuated clamping mechanism has a backer plate with an upper surface and a lower surface. A set of apertures is formed along the periphery of the backer plate. The upper surface of the backer plate has at least one backer plate recess, and preferably four recesses, formed therein. A threaded aperture is also formed in the backer plate. A compression plate is also provided. A second set of apertures is formed along the periphery of the compression plate. The lower surface of the compression plate has at least one compression plate recess, and at least one compression plate aperture. At least one compression spring is disposed between the backer plate and the compression plate. A screw tension release mechanism is screwed into the backer plate threaded aperture and inserted through the compression plate aperture.
    Type: Application
    Filed: April 20, 2011
    Publication date: August 18, 2011
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Benson Chan, Matthew J. Lauffer