Patents Assigned to ENEVATE CORPORATION
  • Patent number: 11616219
    Abstract: Electrodes and methods of forming electrodes are described herein. The electrode can be an electrode of an electrochemical cell or battery. The electrode includes a current collector and a film in electrical communication with the current collector. The film may include a carbon phase that holds the film together. The electrode further includes an electrode attachment substance that adheres the film to the current collector.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: March 28, 2023
    Assignee: Enevate Corporation
    Inventors: Benjamin Yong Park, Ian R. Browne, Stephen W. Schank, Steve Pierce
  • Patent number: 11616235
    Abstract: Systems and methods for batteries comprising a cathode, an electrolyte, and an anode, wherein one or both electrodes contain a functional lithiated agent-containing additive.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: March 28, 2023
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Younes Ansari, Benjamin Park
  • Patent number: 11605806
    Abstract: Methods of forming a composite material film can include providing a layer comprising a carbon precursor and silicon particles on a sacrificial substrate. The methods can also include pyrolysing the carbon precursor to convert the precursor into one or more types of carbon phases to form the composite material film, whereby the sacrificial substrate has a char yield of about 10% or less.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: March 14, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Ian Russell Browne, Rahul R. Kamath, Monika Chhorng, Benjamin Yong Park
  • Patent number: 11605813
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising thiophene compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte, and at least one electrolyte additive selected from a thiophene compound. In some embodiments, the thiophene compound is a terthiophene or a thiophene oligomer.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: March 14, 2023
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park
  • Patent number: 11600818
    Abstract: The present disclosure relates to prelithiated Si electrodes, methods of prelithiating Si electrodes, and use of prelithiated electrodes in electrochemical devices are described. There are several characteristics of electrode prelithiation that enable the superior battery performance. First, a prelithiated silicon anode is already in its expanded state during SEI formation, and therefore less of the SEI layer breaks down and reforms during cycling. Second, the prelithiated anode has a lower anode potential, which may also help the cycle performance of an electrochemical device.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: March 7, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Benjamin Yong Park, Frederic Bonhomme, Shiang Jen Teng, Victor E. House
  • Patent number: 11600809
    Abstract: Systems and methods for thermal gradient during electrode pyrolysis may include fabricating the battery electrode by pyrolyzing an active material on a metal current collector, wherein the active material comprises silicon particles in a binder material, the binder material being pyrolyzed such that a resistance at an inner surface of the active material in contact with the current collector is at least 50% higher than a resistance at an outer surface of the active material. The active material may be pyrolyzed by electromagnetic radiation, which may be provided by one or more lasers, which may include one or more CO2 lasers. The electromagnetic radiation may be provided by one or more infrared lamps. An outer edge of the current collector may be gripped using a thermal transfer block that removes heat from the current collector during pyrolysis of the active material and subsequent cool down.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: March 7, 2023
    Assignee: Enevate Corporation
    Inventors: Jill Renee Pestana, Benjamin Park, Michael Buet, Giulia Canton
  • Patent number: 11594733
    Abstract: Systems and methods utilizing aqueous-based polymer binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and an aqueous-based suspension-solution binder composition comprising a water soluble (aqueous-based) polymer as part of a multi-component binder composition that also contains an water insoluble polymer. The electrode coating layer may include more than 70% silicon and the anode may be in a lithium ion battery.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 28, 2023
    Assignee: Enevate Corporation
    Inventors: Sanjaya Perera, Benjamin Yong Park, Rahul Kamath, Younes Ansari
  • Patent number: 11594714
    Abstract: Systems and methods are provided for high volume roll-to-roll direct coating of electrodes for silicon-dominant anode cells and may include applying a slurry to a current collector film, the slurry comprising silicon particles and a binder material; drying the slurry to form a precursor composite film; rolling the current collector film into a precursor composite roll; and applying a heat treatment to the precursor composite film and the current collector film in a nitrogen gas environment, wherein the heat treatment is configured for converting the precursor composite film to a pyrolyzed composite film. The heat treatment may include one or both of: applying the heat treatment to a roll comprising the precursor composite roll in whole; and applying the heat treatment to the current collector film as it is continuously fed from the precursor composite roll.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 28, 2023
    Assignee: ENEVATE CORPORATION
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Patent number: 11588182
    Abstract: Systems and methods for a battery electrode having a solvent level to facilitate peeling are disclosed. In examples, a battery may include one or more electrodes and an electrolyte. The electrodes include an electrode slurry layer with a solvent. The electrode slurry is coated on a substrate, where the electrode slurry and substrate produce an active material with a residual amount of solvent in response to a heat-treatment, and where the active material comprises 10% to 25% residual solvent by weight following the heat-treatment. The amount of residual solvent facilitates peeling of the active material from the substrate, which, once pyrolyzed, may be used to create a multi-layer film with the current collector film and the active material.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: February 21, 2023
    Assignee: Enevate Corporation
    Inventors: Monika Chhorng, Ian Browne
  • Patent number: 11569530
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising functional thiophene compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte, and at least one electrolyte additive selected from a thiophene compound.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: January 31, 2023
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park, Younes Ansari, Giulia Canton
  • Patent number: 11563253
    Abstract: A method for formation of cylindrical and prismatic can cells may include providing a battery, where the battery includes one or more cells, with each cell including at least one silicon-dominant anode, a cathode, and a separator. The battery also includes a metal can that contains the one or more cells such that during formation a pressure between 50 kPa and 1 MPa is applied to the one or more cells. The battery may include strain absorbing materials arranged between the one or more cells and interior walls of the can. The strain absorbing materials may include foam. The strain absorbing materials may include a solid electrolyte layer. The strain absorbing materials may include PMMA, PVDF, or a combination thereof. The pressure during a formation process may be due to a thickness of the strain absorbing materials being thicker than an expansion of the one or more cells.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 24, 2023
    Assignee: Enevate Corporation
    Inventors: Sanjaya D. Perera, Benjamin Park
  • Patent number: 11548991
    Abstract: Methods of forming a composite material film can include providing a mixture comprising a precursor and silane-treated silicon particles. The methods can also include pyrolysing the mixture to convert the precursor into one or more carbon phases to form the composite material film with the silicon particles distributed throughout the composite material film.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: January 10, 2023
    Assignee: Enevate Corporation
    Inventors: Ian Russell Browne, Liwen Ji, Rahul R. Kamath, Monika Chhorng
  • Patent number: 11552334
    Abstract: Additives for energy storage devices comprising nitrogen-containing compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Nitrogen-containing compounds may serve as additives to the first electrode, the second electrode, and/or the electrolyte, as well as the separator.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: January 10, 2023
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Park, Ambica Nair
  • Patent number: 11545656
    Abstract: Systems and methods for electrode lamination using overlapped irregular shaped active material may include a battery having a cathode, an electrolyte, and an anode, with the anode including an active material on a metal current collector. The active material may include a plurality of irregularly shaped pieces bonded to the metal current collector, and may include silicon, carbon, and a pyrolyzed polymer. The active material may include more than 50% silicon by weight. The plurality of irregularly shaped pieces may be roll press laminated to the metal current collector. Gaps may remain between some of the irregularly shaped pieces of active material. The gaps may absorb strain in the active material during lithiation of the anode. The metal current collector may include a copper or nickel foil. Portions of the metal current collector not covered by active material may be protected by an adhesive or inorganic layer.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 3, 2023
    Assignee: ENEVATE CORPORATION
    Inventor: Benjamin Park
  • Patent number: 11539041
    Abstract: Silicon particles for use in an electrode in an electrochemical cell are provided. The silicon particles may have outer regions extending about 20 nm deep from the surfaces, the outer regions comprising an amount of aluminum such that a bulk measurement of the aluminum comprises at least about 0.01% by weight of the silicon particles. The bulk measurement of the aluminum may provide the amount of aluminum present at least in the outer regions.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: December 27, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Benjamin Yong Park, Jill R. Pestana, Xiaohua Liu, Frederic Bonhomme
  • Patent number: 11539077
    Abstract: Electrolyte additives for energy storage devices comprising compounds containing one, two, or more triple-bonded moieties are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Compounds containing one, two, or more triple-bonded moieties may serve as additives to the electrolyte composition.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: December 27, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park, Heidi Anderson, Sung Won Choi
  • Patent number: 11532833
    Abstract: A clamping device for an electrochemical cell stack is provided. The clamping device can include a first plate and a second plate. The second plate can be positionable relative to the first plate such that a space between the first plate and the second plate can be sized to receive an electrochemical cell stack. The device also can include a coupling member coupling the first plate to the second plate. At least one of the first and second plates can be movable away from the other plate. The coupling member can have a first end portion and a second end portion. The device further can include an elastic member disposed between the first end portion and the second end portion.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: December 20, 2022
    Assignee: Enevate Corporation
    Inventors: Genis Turon Teixidor, Stephen W. Schank, Benjamin Yong Park, Rabih Bachir Zaouk
  • Patent number: 11532851
    Abstract: Energy storage devices comprising a solid-state electrolyte/separator are disclosed. The storage device comprises an anode and a cathode, wherein the anode is a Si-dominant electrode, a solid-state separator between the first electrode and the second electrode wherein the separator comprises an inorganic solid-state material. The energy storage devices may also comprise a small amount of standard liquid electrolyte.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: December 20, 2022
    Assignee: Enevate Corporation
    Inventors: Benjamin Yong Park, Liwen Ji
  • Patent number: 11522223
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising phosphazene based compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte comprising at least two electrolyte co-solvents, wherein at least one electrolyte co-solvent comprises a phosphazene based compound.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: December 6, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park
  • Patent number: 11522193
    Abstract: Systems and methods utilizing water soluble (aqueous) PAA-based polymer binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and a pyrolyzed water soluble PAA-based polymer blend, wherein the water soluble PAA-based polymer blend comprises PAA and one or more additional water-soluble polymer components. The electrode coating layer may include more than 70% silicon and the anode may be in a lithium ion battery.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: December 6, 2022
    Assignee: Enevate Corporation
    Inventors: Sanjaya D. Perera, Benjamin Park, Younes Ansari