Patents Assigned to ENEVATE CORPORATION
  • Patent number: 11342553
    Abstract: The present application describes a method of forming an energy storage device that directly adds a lithium layer (such as a lithium foil or otherwise deposited lithium) into the cell stack during cell assembly for prelithiating. The method includes providing a silicon-based anode, providing a cathode, positioning a separator between the anode and the cathode, and disposing a lithium layer between the silicon-based anode and the separator, such that the lithium layer is in contact with the anode.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: May 24, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Shiang Jen Teng, Xiaohua Liu, David J. Lee, Tracy Ho, Mai Vietnam, Benjamin Yong Park, Frederic Bonhomme
  • Patent number: 11342588
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising dihydrofuranone based compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte comprising at least two electrolyte co-solvents, wherein at least one electrolyte co-solvent comprises a dihydrofuranone based compound.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: May 24, 2022
    Assignee: Enevate Corporation
    Inventors: Hong Zhao, Liwen Ji, Heidi Anderson, Benjamin Yong Park
  • Patent number: 11329267
    Abstract: Systems and methods are provided for heat treatment of whole cell structures. A battery may be formed based on applying of heat treatment to a whole cell composition that includes, at least, both anode material and cathode material, such that the anode material and the cathode material are heat treated at the same time. The heat treatment may include pyrolysis. The whole cell composition, and the corresponding cell formed based thereon, may include solid state electrolyte.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: May 10, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Qian Huang, Benjamin Park, Ian Browne, Rahul Kamath, David J. Lee
  • Patent number: 11309536
    Abstract: Silicon particles for use in an electrode in an electrochemical cell are provided. The silicon particles may have outer regions extending about 20 nm deep from the surfaces, the outer regions comprising an amount of aluminum such that a bulk measurement of the aluminum comprises at least about 0.01% by weight of the silicon particles. The bulk measurement of the aluminum may provide the amount of aluminum present at least in the outer regions.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: April 19, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Benjamin Yong Park, Jill R. Pestana, Xiaohua Liu, Frederic Bonhomme
  • Patent number: 11309580
    Abstract: Methods of forming electrochemical cells are described. In some embodiments, the method can include providing an electrochemical cell having an electrode with at least about 20% to about 99% by weight of silicon. The method can include providing a formation charge current at greater than about 1C to the electrochemical cell. Alternatively or additionally, the method can include providing a formation charge current at a substantially constant charge voltage to the electrochemical cell.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: April 19, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Benjamin Yong Park, Ian Russell Browne, Heidi Leighette Anderson
  • Patent number: 11300631
    Abstract: A method for key predictors and machine learning for configuring battery cell performance may include providing a cell that includes a cathode, a separator, and a silicon-dominant anode; measuring a plurality of parameters of the cell; and using a machine learning model to determine cycle life based on the plurality of measured parameters, where one of the measured parameters includes second cycle coulombic efficiency. The plurality of parameters may include initial coulombic efficiency, cell impedance values, open-circuit voltage, cell thickness, and impedance after degassing. A first subset of the plurality of parameters may be measured before a formation process. A second subset of the plurality of parameters may be measured during a formation process, where the plurality of parameters may include a voltage reached during a first 10% of a first formation cycle. A third subset of the plurality of parameters may be measured during cycling of the cell.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: April 12, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Sam Keene, Giulia Canton, Ian Browne, Xianyang Li, Hong Zhao, Benjamin Park
  • Patent number: 11296311
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: April 5, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Monika Chhorng, David J. Lee, Rahul Kamath
  • Patent number: 11283069
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising fluorinated cyclic compounds.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: March 22, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park
  • Patent number: 11283063
    Abstract: Systems and methods are provided for polarization compensation in silicon-dominant electrode cells. One or more adjustments to operation of a silicon-dominant cell maybe applied based on effects of polarization in the silicon-dominant cell during charge/discharge cycles, with the one or more adjustments configured to compensate for at least some of the effects of polarization in the silicon-dominant cell.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: March 22, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Hong Zhao, Benjamin Yong Park
  • Patent number: 11283068
    Abstract: Methods of preparing an electrochemically active material can include providing electrochemically active particles, coating the particles with a binder, and exposing the particles to a source of metal. The methods can also include forming metal salt on the surface of the particles from the source of metal and heating the metal salt to form metal oxide coated particles.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: March 22, 2022
    Assignee: Enevate Corporation
    Inventors: Sanjaya D. Perera, Benjamin Yong Park, Jill R. Pestana
  • Patent number: 11283114
    Abstract: A method for key predictors and machine learning for configuring battery cell performance may include providing a cell that may include a cathode, a separator, and a silicon-dominant anode; measuring a plurality of parameters of the cell; and using a machine learning model to determine cell performance based on the plurality of measured parameters. The plurality of parameters may include initial coulombic efficiency and/or second cycle coulombic efficiency. Cells may be classified based on the determined cell performance and similarly performing cells may be binned together. A battery pack may be provided with a plurality of cells. The plurality of cells may be assessed during cycling using the machine learning model. One or more of the plurality of cells may be replaced when the assessing determines a different performance of the one or more of the plurality of cells. The battery pack may be in an electric vehicle.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: March 22, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Sam Keene, Giulia Canton, Ian Browne, Xianyang Li, Hong Zhao, Benjamin Park
  • Patent number: 11258058
    Abstract: Systems and methods for generating silicon carbon composite powder that have the electrical properties of thicker, active material silicon carbon composite films or carbon composite electrodes, and may include a cathode, an electrolyte, and an anode, where the electrodes may include silicon carbon composite powder.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: February 22, 2022
    Assignee: Enevate Corporation
    Inventor: Benjamin Park
  • Patent number: 11233230
    Abstract: Systems and methods for water soluble weak acidic resins as carbon precursors for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and pyrolyzed water-soluble acidic polyamide imide as a primary resin carbon precursor. The electrode coating layer may include a pyrolyzed water-based acidic polymer solution additive. The polymer solution additive may include one or more of: polyacrylic acid (PAA) solution, poly (maleic acid, methyl methacrylate/methacrylic acid, butadiene/maleic acid) solutions, and water soluble polyacrylic acid. The electrode coating layer may include conductive additives. The current collector may include a metal foil, where the metal current collector includes one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer may be more than 70% silicon.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: January 25, 2022
    Assignee: Enevate Corporation
    Inventors: Younes Ansari, Liwen Ji, Benjamin Park
  • Patent number: 11223034
    Abstract: Systems and methods for thermal gradient during electrode pyrolysis may include fabricating the battery electrode by pyrolyzing an active material on a metal current collector, wherein the active material comprises silicon particles in a binder material, the binder material being pyrolyzed such that a resistance at an inner surface of the active material in contact with the current collector is at least 50% higher than a resistance at an outer surface of the active material. The active material may be pyrolyzed by electromagnetic radiation, which may be provided by one or more lasers, which may include one or more CO2 lasers. The electromagnetic radiation may be provided by one or more infrared lamps. An outer edge of the current collector may be gripped using a thermal transfer block that removes heat from the current collector during pyrolysis of the active material and subsequent cool down.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: January 11, 2022
    Assignee: Enevate Corporation
    Inventors: Jill Renee Pestana, Benjamin Park, Michael Buet, Giulia Canton
  • Patent number: 11203657
    Abstract: Disclosed are maleic anhydride-grafted cyclic olefin copolymers, methods for preparing maleic anhydride-grafted cyclic olefin copolymers, low temperature methods for laminating anodes comprising the maleic anhydride-grafted cyclic olefin copolymers, and anodes and alkali ion batteries that comprise the maleic anhydride-grafted cyclic olefin copolymers.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: December 21, 2021
    Assignee: Enevate Corporation
    Inventors: Ambica J. Nair, Giulia Canton, Ian Browne, Michael Buet
  • Patent number: 11196037
    Abstract: Silicon particles for active materials and electro-chemical cells are provided. The active materials comprising silicon particles described herein can be utilized as an electrode material for a battery. In certain embodiments, the composite material includes greater than 0% and less than about 90% by weight of silicon particles. The silicon particles have an average particle size between about 0.1 ?m and about 30 ?m and a surface including nanometer-sized features. The composite material also includes greater than 0% and less than about 90% by weight of one or more types of carbon phases. At least one of the one or more types of carbon phases is a substantially continuous phase.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: December 7, 2021
    Assignee: ENEVATE CORPORATION
    Inventors: Benjamin Yong Park, Alexander Gorkovenko, Rabih Bachir Zaouk, William Hubert Schank, Genis Turon Teixidor, Lothar Steffens
  • Patent number: 11183689
    Abstract: Systems and methods for use of silicon with impurities in silicon-dominant anode cells may include a cathode, an electrolyte, and an anode including an active material, where the anode active material includes silicon, and where an impurity level of the silicon may be more than 400 ppm. The impurity level of the silicon is more than 600 ppm. The impurity level may be for elements with an atomic number between 2 and 42. The silicon may have a purity of 99.90% or less. A resistance of the silicon when pressed into a 4 mm thick and 15 mm diameter pellet may be 25 k? or less. The active material may include silicon, carbon, and a pyrolyzed polymer on a metal current collector. The metal current collector may include a copper or nickel foil in electrical contact with the active material. The active material may include more than 50% silicon.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: November 23, 2021
    Assignee: ENEVATE CORPORATION
    Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana
  • Patent number: 11183712
    Abstract: An energy storage device comprising a first electrode and a second electrode, a separator between the first electrode and the second electrode, and an electrolyte in contact with the first electrode, the second electrode, and the separator, wherein the electrolyte comprises at least one of a fluorine-containing cyclic carbonate, a fluorine-containing linear carbonate, and a fluoroether. The electrolyte may be substantially free of non-fluorine containing cyclic carbonates.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: November 23, 2021
    Assignee: Enevate Corporation
    Inventors: Heidi Leighette Anderson, Benjamin Yong Park, Hong Gan, Sung Won Choi
  • Patent number: 11177467
    Abstract: Electrodes and methods of forming electrodes are described herein. The electrode can be an electrode of an electrochemical cell or battery. The electrode includes a current collector and a film in electrical communication with the current collector. The film may include a carbon phase that holds the film together. The electrode further includes an electrode attachment substance that adheres the film to the current collector.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: November 16, 2021
    Assignee: Enevate Corporation
    Inventors: Benjamin Yong Park, Ian R. Browne, Stephen W. Schank, Steve Pierce
  • Patent number: 11171375
    Abstract: A pouched energy storage device can include a cell housing portion and a sealed portion. The device can also include a stack of electrodes housed within an inner region of the cell housing portion. Each electrode can have dimensions of width, length, and thickness. One or more electrodes can have at least one of the dimensions smaller than a corresponding dimension of other electrodes in the stack of electrodes. The device can also include an indentation on the cell housing portion adjacent the sealed portion. The indentation can form a stepped region in the inner region that is complimentary to the one or more electrodes having at least one of the dimensions smaller than a corresponding dimension of other electrodes in the stack of electrodes. The sealed portion can be folded onto the cell housing portion so that at least a part of the sealed portion resides in the indentation.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: November 9, 2021
    Assignee: Enevate Corporation
    Inventor: Benjamin Yong Park