Patents Assigned to ENEVATE CORPORATION
  • Patent number: 11502304
    Abstract: Systems and methods are disclosed that provide for pyrolysis reactions to be performed at reduced temperatures that convert non-conductive precursor polymers to conductive carbon suitable for use in electrode materials, which may be incorporated into a cathode, an electrolyte, and an anode, where the pyrolysis method may include one or more catalysts or reactive reagents.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: November 15, 2022
    Assignee: Enevate Corporation
    Inventors: Ian Browne, Benjamin Park, Giulia Canton, Frederic Bonhomme
  • Patent number: 11502286
    Abstract: Systems and methods for all-conductive battery electrodes may include an electrode coating layer on a current collector, where the electrode coating layer comprises more than 50% silicon, and where each material in the electrode has a resistivity of less than 100 ?-cm. The silicon may have a resistivity of less than 10 ?-cm, less than 1 ?-cm, or less than 1 m?-cm. The electrode coating layer may comprise pyrolyzed carbon and/or conductive additives. The current collector comprises a metal foil. The metal current collector may comprise one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer comprises more than 70% silicon. The electrode may be in electrical and physical contact with an electrolyte. The electrolyte may comprise a liquid, solid, or gel. The battery electrode may be in a lithium ion battery.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: November 15, 2022
    Assignee: ENEVATE CORPORATION
    Inventor: Benjamin Park
  • Patent number: 11502293
    Abstract: A method and system for copper coated anode active material may include providing a metal current collector; an active material layer on the current collector, the active material layer comprising at least 50% silicon by weight, a pyrolyzed carbon source; and a layer of metal on the active material layer that increases conductivity of the layer. The surface may be opposite to a surface of the active material layer that is coupled to the current collector. The layer of metal may comprise copper. The silicon may comprise particles ranging in size from 2 to 50 ?m. The metal layer may comprise islands of metal on the silicon particles. The islands of metal may have a thickness of 100 nm or less. The islands of metal may be less than 50 ?m across. A conductivity of the anode active material layer and layer of metal may be less than 2×10?5 ?-cm.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: November 15, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Mya Le Thai, Benjamin Park, Heidi Anderson
  • Patent number: 11469447
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising sulfonate or carboxylate salt based compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte comprising at least two electrolyte co-solvents, wherein at least one electrolyte co-solvent comprises a sulfonate or carboxylate salt based compound.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: October 11, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Liwen Ji, Benjamin Yong Park
  • Patent number: 11469449
    Abstract: Additives for energy storage devices comprising phosphorus-containing compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Phosphorus-containing compounds may serve as additives to the first electrode, the second electrode and/or the electrolyte, as well as the separator.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: October 11, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Park
  • Patent number: 11462769
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising benzoyl peroxide based compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte comprising at least two electrolyte co-solvents, wherein at least one electrolyte co-solvent comprises a benzoyl peroxide based compound.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: October 4, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park
  • Patent number: 11456484
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising linear carbonate compounds.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: September 27, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park, Sung Won Choi, Heidi Anderson
  • Patent number: 11456457
    Abstract: Systems and methods for aromatic macrocyclic compounds (Phthalocyanines) as cathode additives for inhibition of transition metal dissolution and stable solid electrolyte interphase formation may include an anode, an electrolyte, and a cathode, where the cathode comprises an active material and a phthalocyanine additive, the additive being coordinated with different metal cationic center and functional groups. The active material may comprise one or more of: nickel cobalt aluminum oxide, nickel cobalt manganese oxide, lithium iron phosphate, lithium cobalt oxide, and lithium manganese oxide, Ni-rich layered oxides LiNi1?xMxO2 where M=Co, Mn, or Al, Li-rich xLi2MnO3(1?x)LiNiaCobMncO2, Li-rich layered oxides LiNi1+xM1?O2 where M=Co, Mn, or Ni, and spinel oxides LiNi0.5Mn1.5O4.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: September 27, 2022
    Assignee: Enevate Corporation
    Inventors: Sanjaya D. Perera, Liwen Ji, Jeremy Chang, Benjamin Park
  • Patent number: 11450850
    Abstract: Systems and methods for configuring anisotropic expansion of silicon-dominant anodes using particle size may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by utilizing a predetermined particle size distribution of silicon particles in the active material. The expansion of the anode may be greater for smaller particle size distributions, which may range from 1 to 10 ?m. The expansion of the anode may be smaller for a rougher surface active material, which may be configured by utilizing larger particle size distributions that may range from 5 to 25 ?m. The expansion may be configured to be more anisotropic using more rigid materials for the current collector, where a more rigid current collector may comprise nickel and a less rigid current collector may comprise copper.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 20, 2022
    Assignee: Enevate Corporation
    Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana, Fred Bonhomme, Monika Chhorng, David J. Lee, Heidi Anderson
  • Patent number: 11450845
    Abstract: Various implementations of a method of forming an electrochemical cell include providing a first electrode, a second electrode, a separator between the first and second electrodes, and an electrolyte in a cell container. The first electrode can include silicon-dominant electrochemically active material. The silicon-dominant electrochemically active material can include greater than 50% silicon by weight. The method can also include exposing at least a part of the electrochemical cell to CO2, and forming a solid electrolyte interphase (SEI) layer on the first electrode using the CO2.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: September 20, 2022
    Assignee: Enevate Corporation
    Inventors: Heidi Leighette Anderson, Benjamin Yong Park, Frederic C. Bonhomme
  • Patent number: 11450841
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <600° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material yields silicon constituting between 86% and 97% of weight of the formed anode after pyrolysis. The carbon-based additive yields carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: September 20, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Monika Chhorng, David J. Lee, Rahul Kamath
  • Patent number: 11431029
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising a sulfonate ester compound are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte, and at least one electrolyte additive selected from a sulfonate ester compound.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: August 30, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park
  • Patent number: 11431027
    Abstract: Single Li-ion conducting solid-state polymer electrolytes for use in energy storage devices are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte. Electrolytes may include all-solid-state polymer electrolytes, quasi-solid polymer electrolytes and/or polymer gel electrolytes. The single Li-ion conducting solid-state polymer electrolytes can improve the electrochemical performances and safety of Si anode-based Li-ion batteries.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: August 30, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Park
  • Patent number: 11411249
    Abstract: Electrolytes and electrolyte additives for use in energy storage devices, comprising cyclic carbonate compounds.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: August 9, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Heidi Anderson, Benjamin Yong Park
  • Patent number: 11398641
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising a silicon compound are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte, and at least one electrolyte additive selected from a silicon compound.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: July 26, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park
  • Patent number: 11387443
    Abstract: Silicon-dominate battery electrodes, battery cells utilizing the silicon-dominate battery electrodes, and methods of manufacturing are disclosed. Such a battery cell includes a cathode, a separator, an electrolyte, and an anode. The anode comprises a current collector and active material on the current collector. The active material layer includes at least 50% silicon. A ratio of the electrolyte to Ah is over 2 g/Ah.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: July 12, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Hong Zhao, Younes Ansari, Vincent Giordani, Mya Le Thai, Qing Zhang, Benjamin Park
  • Patent number: 11380890
    Abstract: Silicon particles for active materials and electro-chemical cells are provided. The active materials comprising silicon particles described herein can be utilized as an electrode material for a battery. In certain embodiments, the composite material includes greater than 0% and less than about 90% by weight silicon particles, the silicon particles having an average particle size between about 10 nm and about 40 ?m, wherein the silicon particles have surface coatings comprising silicon carbide or a mixture of carbon and silicon carbide, and greater than 0% and less than about 90% by weight of one or more types of carbon phases, wherein at least one of the one or more types of carbon phases is a substantially continuous phase.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: July 5, 2022
    Assignee: Enevate Corporation
    Inventors: Wei Wang, Benjamin Yong Park, Ian Russell Browne
  • Patent number: 11362315
    Abstract: Systems and methods are provided for high volume roll-to-roll transfer lamination of electrodes for silicon-dominant anode cells.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: June 14, 2022
    Assignee: ENEVATE CORPORATION
    Inventors: Fred Bonhomme, Benjamin Park, Kirk Shockley, Giulia Canton, David J. Lee
  • Patent number: 11355748
    Abstract: In some embodiments, an electrode can include a current collector, a composite material in electrical communication with the current collector, and at least one phase configured to adhere the composite material to the current collector. The current collector can include one or more layers of metal, and the composite material can include electrochemically active material. The at least one phase can include a compound of the metal and the electrochemically active material. In some embodiments, a composite material can include electrochemically active material. The composite material can also include at least one phase configured to bind electrochemically active particles of the electrochemically active material together. The at least one phase can include a compound of metal and the electrochemically active material.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: June 7, 2022
    Assignee: Enevate Corporation
    Inventors: David J. Lee, Xiaohua Liu, Monika Chhorng, Jeff Swoyer, Benjamin Yong Park, Rahul R. Kamath
  • Patent number: 11349153
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising an ether compound are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte, and at least one electrolyte additive selected from ether compounds.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: May 31, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park, Heidi Anderson, Sung Won Choi