Abstract: Method for manufacturing a three-dimensional object by a layer-wise solidification of a building material at positions in the respective layer corresponding to the cross-section of the object to be manufactured by introducing energy by means of electromagnetic radiation, wherein a calculation, which stresses will occur inside of the object during the layer-wise manufacturing, is carried out and wherein the object to be manufactured obtains additional structures with respect to the required shape of the object to be manufactured when a critical value is exceeded.
Abstract: The invention relates to a device (1) for use in eye surgery, comprising a container (9) with fluid (5) which is connected via an irrigation line (12) to a surgical handpiece for delivering the fluid (5) for rinsing an eye (3) on which surgery has been performed, wherein a pillar (8), which in particular is electrically adjustable in its height, is provided for supporting the container (9) and for adjusting the height (H) between the container (9) and the surgical handpiece, and wherein a control for adjusting the height of the pillar (8) is provided in order to deliver the fluid (5) from the surgical handpiece into the eye (3) at an irrigation pressure predetermined by the surgeon, wherein pressurizing means (10) are provided which are designed for charging the fluid (5) to be delivered from the container (9) to the irrigation line (12) with an atmospheric overpressure (PATÜ) and wherein the control for adjusting the desired irrigation pressure is designed both for adjusting the height (H) of the pillar (8)
Abstract: The invention relates to a beam melting installation and method for producing components thereof, in which a component to be produced is produced layer-wise, wherein, a coating slide moves across a build platform, a powder layer is applied onto the build platform and already produced component layers by a blade fastened on the coating slide, and melt traces are subsequently inscribed in the powder layer by means of a directed beam, so that the powder melts in the melt trace and bonds to underlying component layers, wherein, during the travel of the coating slide in order to apply a new powder layer, perturbations of the travel of the coating slide or components connected thereto are metrologically detected, and in particular the beam melting installation is controlled and/or regulated as a function of the detected measured values. The invention furthermore relates to a device for retrofitting beam melting installations.
Abstract: A method for a layer-wise manufacturing of a three-dimensional object has a first step of providing a layer of a material in powder form or a liquid material on a support or a layer that has already been solidified at selected positions previously and a second step of directing a focussed photon or particle beam (8?) selectively at selected positions of the layer. In the second step, the photon or particle beam is selected such that it brings about a change of the absorption of the material when hitting the layer. After the termination of the second step, a third step is carried out, in which the layer is irradiated by means of electromagnetic radiation (18?) such that the material is homogenously solidified at those positions of the layer that correspond to the cross-section of the object to be formed.
Type:
Grant
Filed:
May 23, 2008
Date of Patent:
April 21, 2015
Assignee:
EOS GmbH Electro Optical Systems
Inventors:
Frank Muller, Andreas Pfister, Martin Leuterer, Peter Keller
Abstract: A method is provided, by which a three-dimensional object is manufactured by a subsequent solidification of layers of a building material in powder form at the positions in the respective layer that corresponds to the cross-section of the object by means of the action of a laser or another energy source, wherein as building material in powder form a material is used which contains the old powder that has remained as unsolidified powder in the manufacturing of one or more previously formed objects and a proportion of new powder that has not been used before in any manufacturing process, characterized in that the building material in powder form is mechanically consolidated when a layer is applied.
Type:
Grant
Filed:
January 9, 2014
Date of Patent:
March 3, 2015
Assignee:
EOS GmbH Electro Optical Systems
Inventors:
Jochen Weidinger, Frank Muller, Florian Pfefferkorn
Abstract: A process chamber for a processing of a material by means of a directed beam of electromagnetic radiation is provided, which comprises an optical element (9) for coupling the beam (7) into the process chamber (10), wherein the optical element has a surface (9a) facing the inside of the process chamber, a wall section (12) surrounding the optical element (9), a first inlet (16) for a gas that is arranged at one side of the optical element (9) and designed such that an escaping first gas flow (18) strokes substantially tangentially over the surface (9a) of the optical element (9), a second inlet (23) for a gas, which is designed and arranged such that an escaping second gas flow (25) flows at a distance to the surface (9a) in substantially the same direction as the first gas flow (18).
Abstract: A powder mixture is described, which is suitable for a layer-wise manufacturing of a three-dimensional object by solidifying a building material in powder form. The powder mixture consists of a mixture of a first polyamide 12 powder and a second polyamide 12 powder, wherein the first polyamide 12 powder is characterized by an increase of its viscosity number determined in accordance with ISO 307 that is less than 10%, when the powder is exposed for 20 hours to a temperature that lies 10° C. below its melting temperature under nitrogen atmosphere, and the second polyamide 12 powder is characterized by an increase of its viscosity number, determined in accordance with ISO 307, by 15% or more, when the powder is exposed for 20 hours to a temperature that lies 10° C. below its melting temperature under nitrogen atmosphere.
Abstract: A powder mixture is described, which is suitable for a layer-wise manufacturing of a three-dimensional object by solidifying a building material in powder form. The powder mixture consists of a mixture of a first polyamide 12 powder and a second polyamide 12 powder, wherein the first polyamide 12 powder is characterized by an increase of its viscosity number determined in accordance with ISO 307 that is less than 10%, when the powder is exposed for 20 hours to a temperature that lies 10° C. below its melting temperature under nitrogen atmosphere, and the second polyamide 12 powder is characterized by an increase of its viscosity number, determined in accordance with ISO 307, by 15% or more, when the powder is exposed for 20 hours to a temperature that lies 10° C. below its melting temperature under nitrogen atmosphere.
Abstract: A means for modifying a building space for a device for manufacturing a three-dimensional object by layerwise solidification of a powdery building material at the locations corresponding to the object in the respective layers comprises one or several small supports (32) or one or several building space partitioning elements (20) on a building platform (2), thereby the device has one or several small building areas (22.1, 22.2, 22.3), in which the powdery material may be efficiently used and different powder materials may be processed.
Abstract: The present invention relates to a method and a device for calibrating an irradiation device of an apparatus for generatively manufacturing a three-dimensional object. The calibration includes steps of arranging an image converter plate (12) in or in parallel to a working plane of the apparatus, wherein the image converter plate (12) outputs detectable light (13), when the irradiation device irradiates predetermined positions of the image converter plate (12) with energetic radiation; of scanning the image converter plate (12) by the irradiation device; of detecting the detectable light (13) by a light detector (15); of determining coordinates of the irradiation device, when the detected light (13) is detected; of comparing the determined coordinates with predetermined reference coordinates; and of calibrating the irradiation device on the basis of a deviation between the determined coordinates and the reference coordinates.
Abstract: The present invention relates to a method and a device for manufacturing a three-dimensional object, wherein the object is generated by successively solidifying single layers of fluid or powdery solidifiable building material by the action of electromagnetic radiation. The method comprises steps for emitting a first pulsed electromagnetic radiation onto a first area of a layer of the building material, and for emitting a second continuous electromagnetic radiation onto a second area of the layer of the building material.
Type:
Grant
Filed:
February 22, 2011
Date of Patent:
July 22, 2014
Assignee:
EOS GmbH Electro Optical Systems
Inventors:
Johann Oberhofer, Joachim Göbner, Hans-Ulrich Büse
Abstract: A method of manufacturing three-dimensional objects by laser sintering is provided, the object is formed by solidifying powder material layer by layer at locations in each layer corresponding to the object by means of laser radiation, wherein an IR-radiation image in an applied powder layer is detected, characterized in that defects and/or geometrical irregularities in the applied powder layer are determined on the basis of the IR-radiation image.
Abstract: A device (1) for manufacturing a three-dimensional object by a layer wise solidification of a building material at positions in the respective layers that correspond to the object is provided. A feed (96) that supplies the building material to a building space (10) in the device (1) and at least two filler portions (98a, 98b) that are provided at the feed (96) and are independent from one another are provided, wherein one connector (99a, 99b) is provided for each building material supply container (100a, 100b) in order to supply the building material from outside of the device (1).
Type:
Grant
Filed:
May 24, 2012
Date of Patent:
May 27, 2014
Assignee:
EOS GmbH Electro Optical Systems
Inventors:
Hans Perret, Thomas Halder, Jochen Philippi, Peter Keller, Gerd Cantzler, Michael Göth, Siegfried Schimitzek, Andrea Weichselbaumer
Abstract: A method is provided, by which a three-dimensional object is manufactured by a subsequent solidification of layers of a building material in powder form at the positions in the respective layer that corresponds to the cross-section of the object by means of the action of a laser or another energy source, wherein as building material in powder form a material is used which contains the old powder that has remained as unsolidified powder in the manufacturing of one or more previously formed objects and a proportion of new powder that has not been used before in any manufacturing process, characterized in that the building material in powder form is mechanically consolidated when a layer is applied.
Type:
Application
Filed:
January 9, 2014
Publication date:
May 8, 2014
Applicant:
EOS GmbH Electro Optical Systems
Inventors:
Jochen Weidinger, Frank Muller, Florian Pfefferkorn
Abstract: The invention describes powders for use in the production of spatial structures, i.e. molded bodies, using layer build-up methods, as well as methods for their efficient production. The powders have the special feature that they have good flow behavior, for one thing, and at the same time, have such a composition that the molded body that can be produced with the powder, using rapid prototyping, has significantly improved mechanical and/or thermal properties. According to a particularly advantageous embodiment, the powder has a first component that is present in the form of essentially spherical powder particles, which is formed by a matrix material, and at least one further component in the form of stiffening and/or reinforcing fibers, which are preferably embedded in the matrix material.
Type:
Grant
Filed:
October 31, 2007
Date of Patent:
April 29, 2014
Assignee:
EOS GmbH Electro Optical Systems
Inventors:
Peter Hesse, Tillmann Paul, Richard Weiss
Abstract: A method is provided, by which a three-dimensional object is manufactured by a subsequent solidification of layers of a building material in powder form at the positions in the respective layer that corresponds to the cross-section of the object by means of the action of a laser or another energy source, wherein as building material in powder form a material is used which contains the old powder that has remained as unsolidified powder in the manufacturing of one or more previously formed objects and a proportion of new powder that has not been used before in any manufacturing process, characterized in that the building material in powder form is mechanically consolidated when a layer is applied.
Type:
Grant
Filed:
February 14, 2011
Date of Patent:
February 25, 2014
Assignee:
EOS GmbH Electro Optical Systems
Inventors:
Jochen Weidinger, Frank Muller, Florian Pfefferkorn
Abstract: A method for coating the surfaces of three-dimensional objects with a coating agent is provided, which method is characterized by a blasting of the three-dimensional object, wherein a grainy blasting material that has been mixed with the coating agent is used as blasting medium.
Type:
Application
Filed:
October 10, 2011
Publication date:
December 12, 2013
Applicant:
EOS GMBH ELECTRO OPTICAL SYSTEMS
Inventors:
Mandy Gersch, Ilhan Tuncer, Andreas Hotter, Florian Pfefferkorn
Abstract: An apparatus for manufacturing a three-dimensional object (3) by applying and solidifying a powdery constituent material (3a) layer by layer at positions corresponding to the respective cross sectional area of the object (3) in the respective layer by exposure to a laser (7) or another energy source comprises a heating or cooling element (22) supplying heat to or removing heat away from the constituent material (3a) applied layer by layer. For smoothing the temperature distribution, an intermediate layer (23) having a highly anisotropic heat conductivity is provided.
Abstract: Method of manufacturing a three-dimensional object according to which the object is built layer-wise by solidification of a building material, wherein a test specimen is built which is excited to oscillate after being built and wherein natural frequencies of the oscillations are determined.
Abstract: Method of manufacturing a three-dimensional object of a building material by an additive layer-wise building method, wherein based on material parameters of the building material and predetermined characteristics of the object to be manufactured, an internal structure of the object having a grid structure calculated, and the three-dimensional object is manufactured with this internal structure by the additive layer-wise building method, so that it comprises the predetermined characteristics.
Type:
Application
Filed:
September 5, 2011
Publication date:
July 4, 2013
Applicant:
EOS GMBH ELECTRO OPTICAL SYSTEMS
Inventors:
Monika Gessler, Michael Jan Galba, Johann Oberhofer