Abstract: Method for manufacturing a three-dimensional object by a layer-wise solidification of a building material at positions in the respective layer corresponding to the cross-section of the object to be manufactured by introducing energy by means of electromagnetic radiation, wherein a calculation, which stresses will occur inside of the object during the layer-wise manufacturing, is carried out and wherein the object to be manufactured obtains additional structures with respect to the required shape of the object to be manufactured when a critical value is exceeded.
Abstract: An apparatus for manufacturing a three-dimensional object by a layer-by-layer solidification of building material at the points corresponding to the cross-section of the object to be manufactured in a respective layer. The apparatus includes a process chamber in which the object is to be built up layer by layer by selectively solidifying layers of a building material in a build area, a gas supply device, and a recirculating air filter device, wherein the apparatus comprises a pressure stabilization device configured to keep the pressure in the process chamber substantially constant.
Type:
Application
Filed:
January 31, 2017
Publication date:
February 7, 2019
Applicant:
EOS GmbH Electro Optical Systems
Inventors:
Georg Fey, Martin Heugel, Sebastian Friedel, Dominik Wolf, Alexander Schilling, Philip Ströbel
Abstract: A rail cover assembly includes first and second cover portions with surface regions made from an antimicrobial material. The first cover portion has opposing and longitudinally-extending L-shaped lips with at least one pair of first slots defined at opposing locations along the lips. The second cover portion has opposing longitudinal edges for nesting with the first cover portion's lips, and has at least one pair of second slots defined at opposing locations along the edges in alignment with a corresponding pair of the first slots. A joiner is partially engaged in each of the first slots and partially engaged in a correspondingly aligned one of the second slots. Each joiner includes a first spring-loaded portion engaging the first cover portion and a second spring-loaded portion engaging the second cover portion.
Abstract: Method for calibrating an apparatus for manufacturing a three-dimensional object by layer-wise selective solidification of building material with the step of generating an substantially periodic first modulation pattern in a first sub-area of the build area, the step of generating an substantially periodic second modulation pattern in a second sub-area of the build area, wherein in the overlap zone, the first modulation pattern and the second modulation pattern form an substantially periodic superposition pattern, whose period is larger than the period of the first modulation pattern and the period of the second modulation pattern, the step of detecting the superposition pattern, and the step of determining the deviation of the position of the superposition pattern on the build area from a reference position.
Type:
Application
Filed:
December 20, 2016
Publication date:
December 27, 2018
Applicant:
EOS GmbH Electro Optical Systems
Inventors:
Robert Achim Domröse, Dominik Wolf, Michael Göth, Ulrich Schmid, Maximilian Mittermüller
Abstract: A method for producing a three-dimensional object on a support by applying layer by layer and selectively solidifying a building material in powder form. The method includes lowering the support to a predetermined height below a working plane, applying a layer of the building material in powder form in the working plane, selectively solidifying the applied powder layer at positions corresponding to a cross-section of the object to be produced and repeating the steps of lowering, applying and selectively solidifying until the object is completed. By doing so, the quantity of applied building material in powder form is reduced in a section in an actively controlled way or substantially no building material in powder form is applied in a section in an actively controlled way.
Abstract: A powder discharge unit for equipping and/or upgrading a device for generatively manufacturing a three-dimensional object by a selective layer-by-layer solidification of building material in powder form includes a powder container for receiving building material in powder form and a filling chamber for filling in building material in powder form into the powder container. The powder discharge unit is configured to fluidise the building material in powder form in the powder container and the building material in powder form in the filling chamber independently of one another.
Abstract: A calibration ledge serves for calibrating a manufacturing device for manufacturing a three-dimensional object by a layer-by-layer solidification of a building material at the points corresponding to the respective cross-section of the object by selectively irradiating layers of the building material with a radiation in a working plane. The calibration ledge has an elongated shape and includes an aperture ledge extending in its longitudinal direction and comprising several aperture openings arranged in a row in the longitudinal direction of the calibration ledge which are more permeable for the radiation of the irradiation device than the region of the aperture ledge surrounding the aperture openings.
Abstract: A recoater for applying a building material in a device for manufacturing a three-dimensional object within a build area by solidifying layers of the building material at the points corresponding to the respective cross-section of the object is suitable for applying a building material layer by moving across the build area in a movement direction. The recoater comprises a first scanning device including a first line sensor, for capturing at least a subarea of the build area.
Abstract: The invention relates to a computer-assisted method for examining an input data set of a generative layer building device, comprising at least the following step: —comparing at least one parameter value in a computer-based model of an object that is to be produced using said generative layer building device, to a limiting parameter value which is an extreme value for the parameter able to be obtained in a method for producing the object, and particularly an extreme value for the parameter that can be obtained in a process-stable manner.
Type:
Application
Filed:
December 9, 2016
Publication date:
December 6, 2018
Applicant:
EOS GmbH Electro Optical Systems
Inventors:
Vincent Antoine, Andreas Kahler, Christoph Mair
Abstract: The invention relates to a device (1) for use in surgery to which a surgical implement is connectable in order to conduct surgery on a patient, wherein input means (7) for controlling operating parameters and display means (8) for indicating the operating parameters are provided, wherein the device (1) comprises a first display (9) which is essentially horizontal during operation and a second display (10) which runs obliquely upwards at an installation angle (A), wherein the device (1) exhibits position detection means (18) for detecting contactlessly communicating surgical implements (2, 14, 15) deposited on the first display (9) with regard to their positions on the first display (9).
Abstract: A method of manufacturing a three-dimensional object by a layer-by-layer application and selective solidification of a building material by exposure to a radiation. A hollow body is arranged in a process chamber above a build area which hollow body substantially extends from the build area in a direction of an upper side of the wall of the process chamber. Gas is supplied to the process chamber in such a manner and gas is discharged from the process chamber in such a manner that a lower pressure exists in the region of the process chamber lying within the hollow body than in the region of the process chamber lying outside the hollow body.
Abstract: An exposure optics serves as an equipping and/or retrofitting optics for a device for producing a three-dimensional object by selectively solidifying building material, layer by layer. The exposure optics includes at least a first object-sided lens system having a first focal length f1 and a second image-sided lens system having a second focal length f2, which lens systems can be arranged in the beam path of the radiation emitted by the radiation source. The focal plane of the first lens system and the focal plane of the second lens system coincide in a plane between the two lens systems. The focal length f1 of the first lens system is equal to or greater than the focal length f2 of the second lens system. The exposure optics is designed and can be arranged such that the electromagnetic radiation is incident substantially perpendicular on the working surface.
Abstract: This invention relates to a method of preoperative planning to correct spine misalignment of a patient, comprising a step of making a translation and a rotation, in a sagittal plane, of each vertebra of a set of several cervical and/or thoracic and/or lumbar imaged spine vertebrae, so that said set of imaged vertebrae presents afterwards, in the sagittal plane, the same cervical lordosis and/or the same thoracic kyphosis and/or the same lumbar lordosis as a model adapted for said patient, wherein it also comprises, before said step of making said translation and said rotation in a sagittal plane: a step of making a translation and a rotation, in a coronal plane, of each vertebra of said set of several cervical and/or thoracic and/or lumbar imaged spine vertebrae, so that said set of imaged vertebrae becomes straight in said coronal plane, and of making a rotation, in an axial plane, of each vertebra of said set of several cervical and/or thoracic and/or lumbar imaged spine vertebrae, so that said set of image