Patents Assigned to EOS
  • Patent number: 10806536
    Abstract: Apparatus and methods combine light emitted by a narrow band laser having a peak emission wavelength greater than or equal to about 480 nm with light emitted from one or more additional light sources to provide an illumination beam for illumination inside a human or animal during a diagnostic or surgical procedure. The narrow band laser provides the shortest wavelength contribution to the illumination beam.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: October 20, 2020
    Assignee: EOS Holdings, LLC
    Inventor: David Mordaunt
  • Patent number: 10807304
    Abstract: A method is presented that makes possible the labelling of powders that can be applied as building material in a layer-additive manufacturing method such as a selective laser sintering method. To this effect the powder is mixed with at least one salt of a metal of the rare earths, wherein the salt has the property that it shows a luminescence when being irradiated with photons having a wavelength outside of the visible spectrum or with particle radiation. Thereby, parts that have been manufactured by means of the layer-additive manufacturing method can be identified with regard to the manufacturer, the place of manufacture or the manufacture date.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: October 20, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Peter Keller, Thomas Mattes, Mandy Gersch, Johann Oberhofer, Anton Mayer
  • Publication number: 20200317885
    Abstract: The present invention relates to a composition comprising at least one polymer system and at least one anti-agglomeration agent, the polymer system being selected from at least one thermoplastic polymer, the bulk density of the composition being more than 300 g/I. Furthermore, the present invention relates to a method for producing the composition according to the invention and its use.
    Type: Application
    Filed: October 16, 2017
    Publication date: October 8, 2020
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Monika Gessler, Stefan Paternoster, Daniel Froehlich
  • Patent number: 10792865
    Abstract: A calibration ledge serves for calibrating a manufacturing device for manufacturing a three-dimensional object by a layer-by-layer solidification of a building material at the points corresponding to the respective cross-section of the object by selectively irradiating layers of the building material with a radiation in a working plane. The calibration ledge has an elongated shape and includes an aperture ledge extending in its longitudinal direction and comprising several aperture openings arranged in a row in the longitudinal direction of the calibration ledge which are more permeable for the radiation of the irradiation device than the region of the aperture ledge surrounding the aperture openings.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: October 6, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventor: Jochen Philippi
  • Patent number: 10792861
    Abstract: A method for manufacturing a three-dimensional object by a layer-by-layer application and selective solidification of a building material in powder form in a device. The method includes applying a powder layer of the building material to a build area on an application surface of the device by a recoater moving in a movement direction across the application surface, selectively solidifying the applied powder layer at positions corresponding to a cross-section of the object to be manufactured, and repeating the steps of applying and selectively solidifying until the object is completed. A height of the applied powder layer is varied at least across a section of the powder layer along the movement direction of the recoater.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: October 6, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventor: Jochen Philippi
  • Publication number: 20200307075
    Abstract: The invention describes a laser printing system (100) for illuminating an object moving relative to a laser module of the laser printing system (100) in a working plane (180), the laser module comprising at least two laser arrays of semiconductor lasers and at least one optical element, wherein the optical element is adapted to image laser light emitted by the laser arrays, such that laser light of semiconductor lasers of one laser array is imaged to one pixel in the working plane of the laser printing system, and wherein the laser printing system is a 3D printing system for additive manufacturing and wherein two, three, four or a multitude of laser modules (201, 202) are provided, which are arranged in columns (c1, c2) perpendicular to a direction of movement (250) of the object in the working plane (180), and wherein the columns are staggered with respect to each other such that a first laser module (201) of a first column of laser modules (c1) is adapted to illuminate a first area (y1) of the object and a
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Thomas Mattes, Stefan Paternoster, Gerd Cantzler, Jochen Philippi, Stephan Gronenborn, Gero Heusler, Holger Moench, Ralf Conrads
  • Publication number: 20200308401
    Abstract: The present invention relates to a composition comprising at least one polymer, the polymer being present in the form of polymer particles and the composition contains at least one water-soluble agent, wherein the water-soluble agent has a proportion of at most 1 wt. % to the composition. The present invention further relates to a method for producing the claimed composition according to the invention and to the use thereof.
    Type: Application
    Filed: November 13, 2018
    Publication date: October 1, 2020
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Stoyan Frangov, Andreas Pfister, Peter Keller
  • Patent number: 10780636
    Abstract: A recoating unit (40) serves for equipping or retrofitting a device (1) for additive manufacturing of a three-dimensional object (2) by selectively solidifying a building material (15), preferably a powder, layer by layer. The device (1) comprises a recoater (16) movable across a build area (8) for applying a layer (31b, 32b) of the building material (15) within the build area (8) and a solidification device (20) for selectively solidifying the applied layer (31b, 32b) at positions corresponding to a cross-section of the object (2) to be manufactured. The device (1) is formed and/or controlled to repeat the steps of applying and selectively solidifying until the object (2) is completed.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: September 22, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Stefan Paternoster, Stefan Grünberger
  • Publication number: 20200251745
    Abstract: A chambered frame insert (2) for an electrolyte chamber of a battery (200) includes a plurality of ribs (4) laterally and defining a plurality of chambers (6), and a plurality of voids (8) each formed in a corresponding rib and configured to allow gas to travel between the plurality of chambers. The plurality of ribs are angled with respect to a horizontal lateral axis (H) of the frame insert.
    Type: Application
    Filed: September 25, 2018
    Publication date: August 6, 2020
    Applicant: EOS Energy Storage, LLC
    Inventor: Benjamin Hertzberg
  • Publication number: 20200247059
    Abstract: The invention relates to a method for providing required construction material information in the context of producing at least one three-dimensional object using a generative layer construction device, having the following steps: accessing data of a layer to be applied in a first data set in which for each layer to be applied during the production process, it is indicated whether construction material is to be solidified selectively in the layer and if so, at which locations in said layer the construction material is to be solidified; dividing the area of the layer to be applied into sub-regions; assigning weighting factors to the sub-regions, and ascertaining a construction material quantity to be supplied to the coating device in order to apply the layer, wherein the construction material quantity is ascertained using the weighting factors assigned to individual sub-regions and is provided as required construction material information.
    Type: Application
    Filed: November 25, 2016
    Publication date: August 6, 2020
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Markus Frohnmaier, Oliver Putz
  • Patent number: 10723071
    Abstract: A method for producing a three-dimensional object (2, 10) and a boundary region (8, 9, 18) by layer-wise applying and solidifying of at least one building material, wherein the three-dimensional object (2, 10) is produced with a first generative production method on the basis of a first building material and the boundary region (8, 9, 18) is produced with a second generative production method, which is different from the first generative production method, on the basis of a second building material. The first generative production method comprises the steps: applying a layer of the first building material on a building base (11, 12) or on an already previously applied layer, selectively solidifying the applied layer at positions corresponding to the cross-section of the object (2, 10) in the respective layer and repeating the steps of applying and selectively solidifying until the object (2, 10) is completed.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: July 28, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventor: Georg Fey
  • Patent number: 10723139
    Abstract: The invention describes a laser printing system (100) for illuminating an object moving relative to a laser module of the laser printing system (100) in a working plane (180), the laser module comprising at least two laser arrays of semiconductor lasers and at least one optical element, wherein the optical element is adapted to image laser light emitted by the laser arrays, such that laser light of semiconductor lasers of one laser array is imaged to one pixel in the working plane of the laser printing system, and wherein the laser printing system is a 3D printing system for additive manufacturing and wherein two, three, four or a multitude of laser modules (201, 202) are provided, which are arranged in columns (c1, c2) perpendicular to a direction of movement (250) of the object in the working plane (180), and wherein the columns are staggered with respect to each other such that a first laser module (201) of a first column of laser modules (c1) is adapted to illuminate a first area (y1) of the object and a
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: July 28, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Thomas Mattes, Stefan Paternoster, Gerd Cantzler, Jochen Philippi, Stephan Gronenborn, Gero Heusler, Holger Moench, Ralf Conrads
  • Publication number: 20200223140
    Abstract: Method for cooling a three-dimensional object (2) manufactured by layer-wise selective solidification of a pulverulent building material (15) and non-solidified building material (13) in which the three-dimensional object (2) is embedded by a treatment with a fluid medium. The fluid medium is constituted by a carrier gas that is specifically enriched with an additional component which comprises a further gas and/or a liquid and/or by a gas mixture from which specifically at least one mixture components is at least partially withdrawn.
    Type: Application
    Filed: June 12, 2018
    Publication date: July 16, 2020
    Applicant: EOS GmbH Electro Optical Systems
    Inventor: Thomas Reichel
  • Patent number: 10702227
    Abstract: Disclosed is a method of radiography of an organ of a patient, including: a first vertical scanning of the organ by a first radiation source and a first detector cooperating to make a first two dimensional image of the organ, a second vertical scanning of the organ by a second radiation source and a second detector cooperating to make a second two dimensional image of the organ, the first vertical scanning and the second vertical scanning being performed synchronously, the first and second images viewing the organ of the patient according to different angles of incidence, wherein there is a vertical gap between the first source/detector and the second source/detector, such that the first vertical scanning and the second vertical scanning are performed synchronously but with a time shift in between, so as to reduce cross-scattering between the first and second images.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: July 7, 2020
    Assignee: EOS IMAGING
    Inventor: Jérôme Beucher
  • Patent number: 10702189
    Abstract: Disclosed is a sensor measuring patient spine vertebra angular orientation, including: a fastener, adapted to be fastened on a specific patient spine vertebra in a unique orientation relative to the specific vertebra, a support, solidary with the fastener in a unique orientation relative to the fastener, a detector, removably secured to the support in a unique orientation relative to the support and adapted to measure one or more parameters representative of the patient spine vertebra angular orientation.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: July 7, 2020
    Assignee: EOS IMAGING
    Inventors: Christophe Droit, Joe Hobeika, Rëmi Hugonnet, Sébastien Henry
  • Publication number: 20200198235
    Abstract: A lifting system serves for use in a manufacturing device for generatively manufacturing a three-dimensional object by layerwise application and selective solidification of a building material The manufacturing device includes building base on which the object is to be built upon a building surface. The lifting system includes a holding device suitable for holding and height-adjusting the building base. In a position corresponding to an operating state within the manufacturing device, the holding device is arranged in such a way that the building base is attached to the underside of the holding device so that the building surface faces towards the holding device.
    Type: Application
    Filed: July 5, 2018
    Publication date: June 25, 2020
    Applicant: EOS GmbH Electro Optical Systems
    Inventor: Horst Maier
  • Publication number: 20200198010
    Abstract: The invention relates to a method for additive production of a component layer of a component including the steps of: generating at least one layer from a powdery component material in the region of a structuring and joining zone; subdividing model data of the layer into virtual sub-regions by a control device; selecting at least one of the virtual sub-regions by the control device; localized heating of at least one heating region in a real sub-region of the layer corresponding with the selected virtual sub-region by a heating device; verifying whether a temperature of the layer has, in a predetermined inspection region, a predetermined minimum temperature; and localized solidifying of the layer in a predetermined solidifying region by selective irradiation by at least one energy beam of an energy source, if the layer has the predetermined minimum temperature in the inspection region.
    Type: Application
    Filed: July 27, 2018
    Publication date: June 25, 2020
    Applicants: EOS GmbH Electro Optical Systems, MTU Aero Engines AG
    Inventors: Sebastian EDELHÄUSER, Martin LEUTERER, Michael GÖTH, Bernd BIECHELE, Markus FROHNMAIER, Gerd CANTZLER, Johannes CASPER
  • Patent number: 10692609
    Abstract: A method for producing an orthosis includes at least the steps of receiving patient data of at least one body part of a patient, wherein the body part is borne substantially without a holding apparatus during the reception, ascertaining and/or receiving reference coordinates of virtual and/or physical target objects on the body part, wherein the body part is borne substantially without a holding apparatus during the ascertainment and/or reception and wherein the target objects represent at least one location on the surface of the body part that is representative for attaching the orthosis on the body part, individually fitting a digital orthosis model on the basis of the patient data and the reference coordinates, and manufacturing the orthosis on the basis of the digital orthosis model that is fitted in this way.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: June 23, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Martin Kimm, Vincent Antoine
  • Patent number: 10682700
    Abstract: A device is disclosed for producing a three-dimensional object by layerwise construction. The device contains a flow device for generating a gas flow above an applied layer of the building material by means of a nozzle element for introducing the gas into the device. The nozzle element includes a body with a gas inlet side and a gas outlet side, and channels which penetrate the body from the gas inlet side to the gas outlet side, provided with inlet openings on the gas inlet side and gas outlet openings on the gas outlet side, and which are separated by walls. The length of the channels is selected such that a laminar flow is formed at the gas outlet side.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 16, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Olli Nyrhilä, Alexander Schilling, Jörg Hamann, Robert Achim Domröse, Dominik Wolf, Tatu Syvänen, Kevin Minet
  • Patent number: 10671664
    Abstract: A computer-based method of providing control commands of a control command set for manufacturing a three-dimensional object with an additive manufacturing device. The method includes at least the following steps: a step of allocating input data that represent at least a partial surface of the object to be manufactured, where the partial surface has an initial surface texture defined by a set of initial texture parameter values that characterize the geometry of the initial surface texture; a step of determining a set of target texture parameter values that differ from the set of initial texture parameter values, and a step of generating control commands of a control command set to manufacture the partial surface by the additive manufacturing device with a surface texture that is defined by the set of target texture parameter values.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: June 2, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventor: Dominik Sippel