Patents Assigned to EOS
  • Patent number: 10951307
    Abstract: An optical communication system includes a free space optical transceiver within a housing to transmit and receive optical communication signals along an optical pathway through a window in the housing. Heating elements applied to the interior surface of the window substantially uniformly heat the window such that the window is kept free from condensation and ice without introducing significant distortions in the wavefront. Accordingly, the heating elements are designed and placed on the window such that the obscuration caused by the presence of the heating elements within the optical pathway and the wavefront distortion caused by temperature gradients within the cross-section of the window in the optical pathway cause less than 1 decibel (dB) in transmission loss as compared to the same system without the heating elements on the window.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: March 16, 2021
    Assignee: EOS Defense Systems USA, Inc.
    Inventors: Paolo Zambon, Siegfried Fleischer
  • Patent number: 10948897
    Abstract: A recoating unit (40) serves for equipping or retrofitting a device (1) for additive manufacturing of a three-dimensional object (2) by selectively solidifying a building material (15), preferably a powder, layer by layer. The device (1) comprises a recoater (16) movable across a build area (8) for applying a layer (31b, 32b) of the building material (15) within the build area (8) and a solidification device (20) for selectively solidifying the applied layer (31b, 32b) at positions corresponding to a cross-section of the object (2) to be manufactured. The device (1) is formed and/or controlled to repeat the steps of applying and selectively solidifying until the object (2) is completed. The recoating unit (40) comprises at least two recoating rollers (41, 42) spaced apart from each other in a first direction (B1) and extending into a second direction transversely, preferably perpendicularly, to the first direction.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: March 16, 2021
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Hans Perret, Stefanie Markl
  • Patent number: 10946581
    Abstract: Method for calibrating an apparatus for manufacturing a three-dimensional object by layer-wise selective solidification of building material with the step of generating an substantially periodic first modulation pattern in a first sub-area of the build area, the step of generating an substantially periodic second modulation pattern in a second sub-area of the build area, wherein in the overlap zone, the first modulation pattern and the second modulation pattern form an substantially periodic superposition pattern, whose period is larger than the period of the first modulation pattern and the period of the second modulation pattern, the step of detecting the superposition pattern, and the step of determining the deviation of the position of the superposition pattern on the build area from a reference position.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 16, 2021
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Robert Achim Domröse, Dominik Wolf, Michael Göth, Ulrich Schmid, Maximilian Mittermüller
  • Patent number: 10946441
    Abstract: A device (1) for producing a three-dimensional object (2) through layer-wise solidifying of build-up material (13) at positions (43) corresponding to a cross-section of the object (2) to be produced in a respective layer comprises a coating device (12-14) for applying a layer of the build-up material (13) on a working plane (10), a solidifying device (20) for the selective solidifying of the build-up material (13) in the applied layer and a gas suction nozzle (34) for extracting gas from the device (1) by suction. The gas suction device (34) is thereby movably arranged and the device (1) is designed to control or to regulate a movement and/or orientation of the gas suction nozzle (34) as a function of a number of reference positions (51, 53, 55a, 55b, 55c, 55d).
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: March 16, 2021
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Alexander Schilling, Georg Fey
  • Patent number: 10946446
    Abstract: A method for producing a three-dimensional object by applying layers of a pulverulent construction material and by selectively solidifying said material by the action of energy comprises the steps: a layer of the pulverulent construction material is applied to a support or to a layer of the construction material that has been previously applied and at least selectively solidified; an energy beam from an energy source sweeps over points on the applied layer corresponding to a cross-section of the object to be produced in order to selectively solidify the pulverulent construction material; and a gas flow is guided in a main flow direction (RG) over the applied layer during the sweep of the energy beam. The main flow direction (RG) of the gas flow (G) and the sweep direction (RL) of the energy beam are adapted to one another at least in one region of the cross-section to be solidified.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: March 16, 2021
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Robert Achim Domrose, Michael Hutzel, Alexander Schilling, Andre Danzig, Jorg Hamann, Thomas Hess, Marc Dimter
  • Patent number: 10925376
    Abstract: A lip balm applicator product comprises upper and lower portions that are connectable together to define the applicator product being of a substantially spherical shape. A support platform is located in the lower portion and accommodates a quantity of lip balm having an arcuate surface. A lip balm comprises a composition of waxes and oils in solid form and formed to have an arcuate surface. The composition is formed to have the arcuate surface using a hot pour process. A method of manufacturing a lip balm comprises providing a receptacle having a concave arcuate surface. A lip balm material in a heated, liquefied phase is poured into the receptacle. Once poured, the heated, liquefied phase is allowed to solidify such that a surface of the solidified lip balm material has an arcuate configuration that corresponds to the concave arcuate surface of the receptacle.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: February 23, 2021
    Assignee: EOS PRODUCTS, LLC
    Inventors: Jonathan Teller, Craig Dubitsky, Coral Garvey, Dennis Payongayong
  • Publication number: 20210050149
    Abstract: A method of manufacturing a permanent magnet, including providing a powder composition, of which a first fraction includes ferromagnetic metal particles and a second fraction includes thermoplastic polymer particles; using the powder composition in a powder-bed based additive manufacturing process to form a part including ferromagnetic metal particles embedded in a fused thermoplastic polymer body; and subsequently conferring magnetism on the built part by arranging the finished part in a magnetic field.
    Type: Application
    Filed: August 12, 2019
    Publication date: February 18, 2021
    Applicant: EOS of North America, Inc.
    Inventor: Richard B. Booth
  • Patent number: 10919219
    Abstract: The invention refers to a method of generatively manufacturing a three-dimensional object (2) in a process chamber (3) of a generative manufacturing apparatus (1) by a layer-by-layer application and selective solidification of a building material (13) within a build area (10) arranged in the process chamber. In the course of this, while the object is being manufactured, a process gas is supplied to the process chamber by means of a gas supply device and is discharged from the process chamber via an outlet (42a, 42b). According to the invention, the gas supply device is designed and/or arranged relatively to the build area and/or controlled such that a gas stream (40) of the process gas streaming through the process chamber is shaped in such a manner that a substantially elongate oval impingement area (A3) of the gas stream (40) is generated within the build area (10).
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 16, 2021
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Sebastian Mehl, Maximilian Mittermüller, Martin Schade, Alexander Schilling
  • Publication number: 20210039322
    Abstract: Disclosed is a method for providing a control command set for an additive manufacturing device. The method includes providing a parameter set consisting of a number of parameters, and a construction rule, which is suitable for describing at least one section of the object by the parameter set geometrically as a number of linear or flat elements in space; generating a computer-based layer model of the section of the object by determining, for each layer, the position and shape of a cross-section of the section of the object within the layer, generating a control command set for an additive manufacturing device by which the production of the section of the object is implemented on the basis of the layer model.
    Type: Application
    Filed: January 24, 2019
    Publication date: February 11, 2021
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Michael Goeth, Martin Leuterer
  • Publication number: 20210016512
    Abstract: The invention relates to a method for providing control data for an additive manufacture device, having: a first step (S1) of accessing model data: a second step (S2) of generating a data model in which a construction material layer region (51) to be solidified during the production of an object section is specified for a construction material layer, wherein the region (51) to be solidified is divided into a first sub-region (51a) and a second sub-region (51 b), and a respective solidification scan of the region (51) locations to be solidified is specified in a data model, said scan solidifying the construction material, and a repeated scan is specified at the locations of the second sub-region (51b) but not at the locations of the first sub-region (51a), the energy input parameter during the repeat scan being measured such that the temperature of the construction material lies above a melting temperature; and a third step (S3) of providing data models generated in the second step (S2) as control data for int
    Type: Application
    Filed: February 28, 2019
    Publication date: January 21, 2021
    Applicant: EOS GmbH Electro Optical Systems
    Inventor: Stefan Paternoster
  • Publication number: 20210008806
    Abstract: A calibration method includes positioning the coating unit in a first measuring position and detecting a first position reference value with respect to the reference point and a first measuring point associated with the coating unit at the first measuring position, positioning the coating unit in a second measuring position by moving the coating unit in the direction of movement and detecting a second position reference value with respect to the reference point and a second measuring point associated with the coating unit at the second measuring position, and determining a correction value for the first application element and/or the second application element from the detected first position reference value and the detected second position reference value.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 14, 2021
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Stefan Gruenberger, Stefanie Markl
  • Patent number: 10892524
    Abstract: The present invention provides an aqueous electrolyte for use in rechargeable zinc-halide storage batteries that possesses improved stability and durability and improves zinc-halide battery performance (e.g., energy efficiency, Coulombic efficiency, and/or the like). One aspect of the present invention provides an electrolyte for use in a secondary zinc bromine electrochemical cell comprising from about 30 wt % to about 40 wt % of ZnBr2 by weight of the electrolyte; from about 5 wt % to about 15 wt % of KBr; from about 5 wt % to about 15 wt % of KCl; and one or more quaternary ammonium agents, wherein the electrolyte comprises from about 0.5 wt % to about 10 wt % of the one or more quaternary ammonium agents.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: January 12, 2021
    Assignee: Eos Energy Storage, LLC
    Inventors: George W. Adamson, Sara S. Bowers, Francis W. Richey
  • Publication number: 20210001561
    Abstract: Disclosed is a method of providing control data for an additive manufacturing device. The method includes accessing computer-based model data of at least a portion of the object to be manufactured, generating at least one data model of a region of a building material layer to be selectively solidified for manufacturing the at least one object portion. The data model specifies solidification of the building material, and the end point of the at least one solidification path a set of energy introduction parameter values is specified which generates a reference value for the radiation power per unit area in the radiation impact area of the beam bundle on the building material which is lower than the reference value for the radiation power per unit area at other locations of the solidification path, and providing control data corresponding to the generated at least one data model for generating a control data set for the additive manufacturing device.
    Type: Application
    Filed: April 11, 2019
    Publication date: January 7, 2021
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Joerg Hamann, Peter Holfelder, Ludger Huemmeler, Manuel Walter
  • Patent number: 10884245
    Abstract: A display system providing in the motorcyclist's field of view all required visual information in form of the image projected into optical infinity in traffic direction, realized by using located in the motorcyclist's helmet the autonomous optoelectronic system including the display module comprising: the light-emitting micro display, the collimating lens, the flat semitransparent reflector, fixed on the lens case and located in front of the motorcyclist's eye so that to observe the luminous informational image projected into optical infinity against the external situation picture background. Said reflector is movably mounted in two positions: working and distant from the face. The lens assembly including the micro display and bracket with the reflector is equipped with an adjustment bracket allowing to place it in front of right or left motorcyclist's eye. A camera and a photo sensor measuring the background brightness are mounted on the helmet body.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: January 5, 2021
    Assignee: EOS HOLDING GMBH
    Inventors: Matvey Lvovskiy, Aleksandr Efros, Artem Goldman
  • Patent number: 10879708
    Abstract: A method includes receiving current measurements from at least one current sensor configured to measure current of a battery system in communication with a power distribution network having a power plant. The method also includes receiving voltage measurements from at least one voltage sensor configured to measure voltage of the battery system and temperature measurements from at least one temperature sensor configured to measure temperature of the battery system. The method includes determining an impedance parameter of the battery system based on the received measurements, a temperature parameter of the battery system based on the received measurements, a predicted voltage parameter based on the impedance parameter, and a predicted temperature parameter based on the temperature parameter. The method includes commanding the battery system to charge power from the power plant or discharge power from the power plant based on the predicted voltage parameter and the predicted temperature parameter.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 29, 2020
    Assignee: Eos Energy Storage, LLC
    Inventors: Kamel Belkacem-Boussaid, George W. Adamson
  • Publication number: 20200376556
    Abstract: A method for providing control data to an additive manufacturing device includes a first step of accessing computer-based model data of a partial area of a cross-section of the object, and a second step of generating a data model of the sub-region, by specifying a solidification of the building material by at least one energy beam bundle along at least one solidification path. A plurality of solidification path sections are scanned at least twice with an energy beam bundle and the amount of energy to be introduced during the scanning is specified so that either the amount of energy introduced during the first scanning or a subsequent scanning is is too small to cause a solidification of the building material. In a third step, control data corresponding to the data model generated in the second step are provided for generating a control data set for the additive manufacturing device.
    Type: Application
    Filed: January 18, 2019
    Publication date: December 3, 2020
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Sebastian Edelhaeuser, Michael Goeth, Ludger Huemmeler
  • Publication number: 20200368816
    Abstract: Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method, wherein the powder mixture comprises a first material and a second material, wherein the first material comprises a steel in powder form, wherein the second material comprises a reinforcement material different from the first material, wherein the powder mixture is adapted to form a composite object when solidified by means of an electromagnetic and/or particle radiation in the additive manufacturing method, and wherein the reinforcement material comprises nanoparticles.
    Type: Application
    Filed: November 30, 2017
    Publication date: November 26, 2020
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Hannu Heikkinen, Antti Mutanen, Antti Poerhoenen, Maija Nystroem, Tatu Syvaenen, Olli Nyrhilae
  • Patent number: 10843450
    Abstract: A method for controlling the direction of gas suctioning is carried out in a device (1) for producing a three-dimensional object (2) by selectively solidifying building material (13) layer by layer. The device (1) comprises an application device (12-14) for applying a layer of the building material (13) to a build area in a working plane (10), a solidifying device (20) for selectively solidifying the building material (13) in the applied layer, and at least two gas nozzles (40) which are arranged at the edge of the build area. The gas nozzles (40) are switchable into a function for suctioning gas from the device (1) and to a functionless state, and are switched depending on an operating state of the device (1).
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: November 24, 2020
    Assignee: EOS GmbH Electro Optical Systems
    Inventors: Alexander Schilling, Georg Fey
  • Publication number: 20200362120
    Abstract: The present invention concerns a composition comprising at least one polymer, wherein the polymer is in the form of polymer particles, and wherein the composition contains at least one additive, wherein the additive is in a proportion of at most 2% by weight of the composition. Furthermore, the present invention concerns a method for the production of the composition in accordance with the invention, as well as a method for the production of an article comprising the composition in accordance with the invention. Finally, the present invention concerns the use of the composition in accordance with the invention.
    Type: Application
    Filed: November 13, 2018
    Publication date: November 19, 2020
    Applicant: EOS GmbH Electro Optical Systems
    Inventors: Stoyan Frangov, Andreas Pfister
  • Patent number: 10821510
    Abstract: The invention relates to a method and an associated device, the method including at least the following steps: applying a layer of powder to a component platform in the region of a building and joining area; locally melting and/or sintering the powder layer, wherein, in the region of the building and joining area, at least one high-energy beam is moved in relation to the component platform, selectively impinging the powder layer, at least part of which at least one high-energy beam and the component platform are moved in relation to one another, in the form of a parallel arrangement arranged along a linear feed direction; lowering the component platform by a predetermined layer thickness in a lowering direction; and repeating the above-mentioned steps until the component region is completed.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: November 3, 2020
    Assignees: MTU Aero Engines AG, EOS GmbH Electro Optical Systems
    Inventors: Andreas Jakimov, Georg Schlick, Herbert Hanrieder, Martin Leuterer