Patents Assigned to EverSpin Technologies, Inc.
  • Publication number: 20200286950
    Abstract: Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Applicant: Everspin Technologies, Inc.
    Inventors: Kerry Joseph NAGEL, Sanjeev AGGARWAL, Thomas ANDRE, Sarin A. DESHPANDE
  • Publication number: 20200287128
    Abstract: A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes (a) etching through at least a portion of a thickness of the surface region to create a first set of exposed areas in the form of multiple strips extending in a first direction, and (b) etching through at least a portion of a thickness of the surface region to create a second set of exposed areas in the form of multiple strips extending in a second direction. The first set of exposed areas and the second set of exposed areas may have multiple areas that overlap. The method may also include, (c) after the etching in (a) and (b), etching through at least a portion of the thickness of the magnetoresistive stack through the first set and second set of exposed areas.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Applicant: Everspin Technologies, Inc.
    Inventors: Kerry Joseph NAGEL, Sanjeev AGGARWAL, Sarin A. DESHPANDE
  • Publication number: 20200266235
    Abstract: A magnetoresistive stack/structure and method of manufacturing same comprising wherein the stack/structure includes a seed region, a fixed magnetic region disposed on and in contact with the seed region, a dielectric layer(s) disposed on the fixed magnetic region and a free magnetic region disposed on the dielectric layer(s). In one embodiment, the seed region comprises an alloy including nickel and chromium having (i) a thickness greater than or equal to 40 Angstroms (+/?10%) and less than or equal to 60 Angstroms (+/?10%), and (ii) a material composition or content of chromium within a range of 25-60 atomic percent (+/?10%) or 30-50 atomic percent (+/?10%).
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Applicant: Everspin Technologies, Inc.
    Inventors: Jijun SUN, Sanjeev AGGARWAL, Han-Jong CHIA, Jon M. SLAUGHTER, Renu WHIG
  • Publication number: 20200243761
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer. (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
    Type: Application
    Filed: April 10, 2020
    Publication date: July 30, 2020
    Applicant: Everspin Technologies, Inc.
    Inventors: Sarin A. DESHPANDE, Kerry Joseph NAGEL, Chaitanya MUDIVARTHI, Sanjeev AGGARWAL
  • Publication number: 20200235288
    Abstract: The present disclosure is drawn to, among other things, a magnetoresistive device and a magnetoresistive memory comprising a plurality of such magnetoresistive devices. In some aspects, a magnetoresistive device may include a magnetically fixed region, a magnetically free region above or below the magnetically fixed region, and an intermediate region positioned between the magnetically fixed region and the magnetically free region, wherein the intermediate region includes a first dielectric material. The magnetoresistive device may also include encapsulation layers formed on opposing side walls of the magnetically free region, wherein the encapsulation layers include the first dielectric material.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 23, 2020
    Applicant: Everspin Technologies, Inc.
    Inventors: Sumio IKEGAWA, Han Kyu LEE, Sanjeev AGGARWAL, Jijun SUN, Syed M. ALAM, Thomas ANDRE
  • Publication number: 20200235289
    Abstract: The present disclosure is drawn to, among other things, a magnetoresistive memory. The magnetoresistive memory comprises a plurality of magnetoresistive memory devices, wherein each magnetoresistive memory device includes a fixed magnetic region, a free magnetic region, and an intermediate region disposed in between the fixed and free magnetic regions. The magnetoresistive memory further comprises a first conductor extending adjacent each magnetoresistive memory device of the plurality of magnetoresistive devices, wherein the first conductor is in electrical contact with the free magnetic region of each magnetoresistive memory device.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 23, 2020
    Applicant: Everspin Technologies, Inc.
    Inventors: Syed M. ALAM, Thomas ANDRE, Frederick MANCOFF, Sumio IKEGAWA
  • Patent number: 10707410
    Abstract: A magnetoresistive magnetic tunnel junction (MTJ) stack includes a free magnetic region, a fixed magnetic region, and a dielectric layer positioned between the free magnetic region and the fixed magnetic region. In one aspect, the fixed magnetic region consists essentially of an unpinned, fixed synthetic anti-ferromagnetic (SAF) structure which comprises (i) a first layer of one or more ferromagnetic materials, including cobalt, (ii) a multi-layer region including a plurality of layers of ferromagnetic materials, wherein the plurality of layers of ferromagnetic materials include a layer of one or more ferromagnetic materials including cobalt, and (iii) an anti-ferromagnetic coupling layer disposed between the first layer and the multi-layer region. The free magnetic region may include a circular shape, the one or more ferromagnetic materials of the first layer may include cobalt, iron and boron, and the dielectric layer may be disposed on the first layer.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 7, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Srinivas V. Pietambaram, Bengt J. Akerman, Renu Whig, Jason A. Janesky, Nicholas D. Rizzo, Jon M. Slaughter
  • Patent number: 10700268
    Abstract: A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes (a) etching through at least a portion of a thickness of the surface region to create a first set of exposed areas in the form of multiple strips extending in a first direction, and (b) etching through at least a portion of a thickness of the surface region to create a second set of exposed areas in the form of multiple strips extending in a second direction. The first set of exposed areas and the second set of exposed areas may have multiple areas that overlap. The method may also include, (c) after the etching in (a) and (b), etching through at least a portion of the thickness of the magnetoresistive stack through the first set and second set of exposed areas.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: June 30, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Kerry Joseph Nagel, Sanjeev Aggarwal, Sarin A. Deshpande
  • Patent number: 10700123
    Abstract: Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: June 30, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Thomas Andre, Sanjeev Aggarwal, Kerry Joseph Nagel, Sarin A. Deshpande
  • Publication number: 20200203599
    Abstract: Spin-orbit-torque (SOT) segments are provided along the sides of free layers in magnetoresistive devices that include magnetic tunnel junctions. Current flowing through such SOT segments injects spin current into the free layers such that spin torque is applied to the free layers. The spin torque can be used as an assist to spin-transfer torque generated by current flowing vertically through the magnetic tunnel junction in order to improve the efficiency of the switching current applied to the magnetoresistive device.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Applicant: Everspin Technologies, Inc.
    Inventor: Han-Jong Chia
  • Patent number: 10692926
    Abstract: A magnetoresistive stack/structure and method of manufacturing same comprising wherein the stack/structure includes a seed region, a fixed magnetic region disposed on and in contact with the seed region, a dielectric layer(s) disposed on the fixed magnetic region and a free magnetic region disposed on the dielectric layer(s). In one embodiment, the seed region comprises an alloy including nickel and chromium having (i) a thickness greater than or equal to 40 Angstroms (+/?10%) and less than or equal to 60 Angstroms (+/?10%), and (ii) a material composition or content of chromium within a range of 25-60 atomic percent (+/?10%) or 30-50 atomic percent (+/?10%).
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: June 23, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Jijun Sun, Sanjeev Aggarwal, Han-Jong Chia, Jon M. Slaughter, Renu Whig
  • Publication number: 20200185602
    Abstract: A magnetoresistive structure having two dielectric layers, and method of manufacturing same, includes a free magnetic layer positioned between the two dielectric layers. The method of manufacture comprises at least two etch processes and at least one encapsulation process interposed therebetween wherein the encapsulation is formed on sidewalls of the partially formed magnetoresistive stack between etch processes. For example, an exemplary method of manufacturing a magnetoresistive device includes etching through a second electrode, second dielectric layer and free magnetic layer to provide a sidewall of (i) an unpinned synthetic antiferromagnetic structure, (ii) a second dielectric layer and (iii) a free magnetic layer; thereafter, forming an encapsulation material on the sidewall of the unpinned synthetic antiferromagnetic structure, second dielectric layer and free magnetic layer, and after forming the encapsulation material, etching through a first dielectric layer.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 11, 2020
    Applicant: Everspin Technologies, Inc.
    Inventors: Sanjeev AGGARWAL, Kerry NAGEL, Jason Janesky
  • Publication number: 20200176672
    Abstract: A magnetoresistive device may include an intermediate region positioned between a magnetically fixed region and a magnetically free region, and spin Hall channel region extending around a sidewall of at least the magnetically free region. An insulator region may extend around a portion of the sidewall such that the insulator region contacts a first portion of the sidewall and the spin Hall channel region contacts a second portion of the sidewall.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Applicant: Everspin Technologies, Inc.
    Inventors: Sanjeev AGGARWAL, Sarin A. DESHPANDE
  • Patent number: 10659081
    Abstract: Techniques for recovering preprogrammed data from non-volatile memory are provided that include majority voting and/or use of one or more levels of ECC correction. Embodiments include storage of multiple copies of the data where ECC correction is performed before and after majority voting with respect to the multiple copies. Multiple levels of ECC correction can also be performed where one level of ECC is performed at the local level (e.g. on-chip), whereas another level of ECC correction is performed at a system level.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: May 19, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Sumio Ikegawa, Jon Slaughter
  • Patent number: 10657014
    Abstract: The present disclosure is drawn to, among other things, a method of managing a memory device. In some aspects, the method includes scanning a first memory region for bit errors; in response to detecting one or more bit errors in the first memory region, incrementing a counter associated with the first memory region based on the number of bit errors detected; comparing a total number of bit errors against a threshold, wherein the total number of bit errors is identified from the first counter; and, if the total number of bit errors exceeds the threshold, restricting access to the first memory region by mapping an address corresponding to the first memory region to a second memory region.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: May 19, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Kurt Baty, Terry Van Hulett
  • Patent number: 10658576
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: May 19, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Sarin A. Deshpande, Kerry Joseph Nagel, Chaitanya Mudivarthi, Sanjeev Aggarwal
  • Patent number: 10658575
    Abstract: Techniques are presented for ensuring alignment marks are available for use and patterning magnetoresistive devices following the deposition of layers used to form the magnetoresistive devices. In some cases, the plurality of layers corresponding to the magnetoresistive devices are selectively etched in order to expose the underlying alignment marks, whereas in other embodiments, the deposition of the plurality of layers is controlled by deposition tool tabs that prevent the materials from obscuring the underlying alignment marks.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 19, 2020
    Assignee: Everspin Technologies, Inc.
    Inventor: Kerry Joseph Nagel
  • Patent number: 10658013
    Abstract: The present disclosure is drawn to, among other things, a magnetic memory. The magnetic memory comprises a first common line, a second common line, and a memory cell. The magnetic memory further includes a bias voltage generation circuit and a voltage driver. The bias voltage generation circuit and the voltage driver are configured to provide driving voltages to the memory cell during access operations.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: May 19, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Thomas Andre, Syed M. Alam, Frederick Neumeyer
  • Patent number: 10657065
    Abstract: A memory having a delayed write-back to the array of data corresponding to a previously opened page allows delays associated with write-back operations to be avoided. After an initial activation opens a first page and the read/write operations for that page are complete, write-back of the open page to the array of memory cells is delayed until after completion of a subsequent activate operation that opens a new page. Techniques to force a write-back in the absence of another activate operation are also disclosed.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: May 19, 2020
    Assignee: Everspin Technologies, Inc.
    Inventors: Thomas S. Andre, Syed M. Alam, Chitra K. Subramanian, Javed S. Barkatullah
  • Patent number: 10649942
    Abstract: In some examples, a communications device includes a magnetic memory accessible by both a central processing unit and a digital signal processor to enable the central processing unit to assist the digital signal processor in establishing and maintaining a communication channel. The communication device is configured to re-establish communications in the event of an interruption in the communication channel or if the communication device experiences a power loss event.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: May 12, 2020
    Assignee: Everspin Technologies, Inc.
    Inventor: Safdar Asghar