Patents Assigned to FUJITSU SEMICONDUCTOR
  • Patent number: 9437598
    Abstract: A semiconductor device manufacturing method includes: forming a first well of the first conductivity type in a substrate; forming a second well of the first conductivity type in a first region of the substrate; forming a third well of the second conductivity type underneath the second well in the first region of the substrate in a position overlapping with the first well located underneath the second well in the first region of the substrate; forming a fourth well, that surrounds the second well and has the second conductivity type, in the first region of the substrate; forming a fifth well of the first conductivity type above the first well in the second region of the substrate; and forming a sixth well of the second conductivity type above the first well in the second region of the substrate.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: September 6, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Hiroyuki Ogawa, Junichi Ariyoshi
  • Patent number: 9437596
    Abstract: A semiconductor device includes a substrate, a first well of a first conductivity type formed within the substrate, a second well of a second conductivity type formed underneath the first well within the substrate and a third well of the second conductivity type formed horizontally to the first well within the substrate, and including a first region formed to a first depth from a surface of the substrate, and a second region formed to a second depth greater than the first depth from the surface of the substrate and connected to the second well.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: September 6, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Junichi Ariyoshi
  • Patent number: 9431393
    Abstract: A semiconductor device includes: a first well provided in a semiconductor substrate; a second well provided in the semiconductor substrate, so as to be isolated from the first well; a Schottky barrier diode formed in the first well; and a PN junction diode formed in the second well, with an impurity concentration of the PN junction thereof set higher than an impurity concentration of the Schottky junction of the Schottky barrier diode, and being connected antiparallel with the Schottky barrier diode.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: August 30, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Dai Kanai, Taiji Ema, Kazushi Fujita
  • Patent number: 9431285
    Abstract: A method of manufacturing a semiconductor device including performing a first thermal processing a silicon substrate in a first atmosphere and at a first temperature to remove an oxide film above a surface of the silicon substrate, and after the first thermal processing, performing a second thermal processing the silicon substrate in a second atmosphere containing hydrogen and at a second temperature lower than the first temperature to terminate the surface of the silicon substrate with hydrogen.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: August 30, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Naoyoshi Tamura, Keita Nishigaya, Mitsuaki Hori, Hiroe Kawamura
  • Patent number: 9431068
    Abstract: A dynamic random access memory (DRAM) can include at least one DRAM cell array, comprising a plurality of DRAM cells, each including a storage capacitor and access transistor; a body bias control circuit configured to generate body bias voltage from a bias supply voltage, the body bias voltage being different from power supply voltages of the DRAM; and peripheral circuits formed in the same substrate as the at least one DRAM array, the peripheral circuits comprising deeply depleted channel (DDC) transistors having bodies coupled to receive the body bias voltage, each DDC transistor having a screening region of a first conductivity type formed below a substantially undoped channel region.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: August 30, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Lucian Shifren, Richard S. Roy
  • Patent number: 9424385
    Abstract: A method for modifying a design of an integrated circuit includes obtaining design layout data for the integrated circuit and selecting at least one SRAM cell in the integrated circuit to utilize enhanced body effect (EBE) transistors comprising a substantially undoped channel layer and a highly doped screening region beneath the channel layer. The method also includes extracting, from the design layout, NMOS active area patterns and PMOS active area patterns associated with the SRAM cell to define an EBE NMOS active area layout and a EBE PMOS active area layout. The method further includes adjusting the EBE NMOS active area layout to reduce a width of at least pull-down devices in the SRAM cell and altering a gate layer layout in the design layout data such that a length of pull-up devices in the at least one SRAM and a length of the pull-down devices are substantially equal.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: August 23, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: George Tien, David A. Kidd, Lawrence T. Clark
  • Patent number: 9418987
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. A novel dopant profile indicative of a distinctive notch enables tuning of the VT setting within a precise range. This VT set range may be extended by appropriate selection of metals so that a very wide range of VT settings is accommodated on the die. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The result is the ability to independently control VT (with a low ?VT) and VDD, so that the body bias can be tuned separately from VT for a given device.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: August 16, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Reza Arghavani, Pushkar Ranade, Lucian Shifren, Scott E. Thompson, Catherine de Villeneuve
  • Patent number: 9406567
    Abstract: Fabrication of a first device on a substrate is performed by exposing a first device region, removing a portion of the substrate to create a trench in the first device region, forming a screen layer with a first dopant concentration in the trench on the substrate, and forming an epitaxial channel on the screen layer having a first thickness. On or more other devices are similarly formed on the substrate independent of each other with epitaxial channels of different thicknesses than the first thickness. Devices with screen layers having the same dopant concentration but with different epitaxial channel thicknesses have different threshold voltages. Thus, a wide variety of threshold voltage devices can be formed on the same substrate. Further threshold voltage setting can be achieved through variations in the dopant concentration of the screen layers.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: August 2, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lucian Shifren, Pushkar Ranade, Thomas Hoffmann, Scott E. Thompson
  • Publication number: 20160218069
    Abstract: A semiconductor device includes wiring layers formed over a semiconductor wafer, a via-layer between the wiring layers, conductive films in the wiring layers, and a via-plug in the via-layer connecting the conductive films of the wiring layers above and below, a scribe region at an outer periphery of a chip region along an edge of the semiconductor substrate and including a pad region in the vicinity of the edge, the pad region overlapping the conductive films of the plurality of wiring layers in the plan view, the plurality of wiring layers including first second wiring layers, the conductive film of the first wiring layer includes a first conductive pattern formed over an entire surface of said pad region in a plan view, and the conductive film of the second wiring layer includes a second conductive pattern formed in a part of the pad region in a plan view.
    Type: Application
    Filed: April 1, 2016
    Publication date: July 28, 2016
    Applicants: FUJITSU SEMICONDUCTOR LIMITED, FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Kazutaka Yoshizawa, Taiji Ema, Takuya Moriki
  • Patent number: 9401192
    Abstract: A semiconductor memory device includes a memory cell array, a word line decoder, a time determination signal generation circuit, and a timing circuit. The memory cell array is configured to include a plurality of memory cells, and the word line decoder is configured to control selection and a voltage level of a word line connected to each of the memory cells. The time determination signal generation circuit is configured to generate a time determination signal indicating a determination time, the determination time being a reference by which a change in a command is determined, and the timing circuit is configured to determine the change in the command from the time determination signal and generate a control signal which controls whether or not a selected word line is pre-charged.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: July 26, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Masaki Okuda, Keizo Morita, Tomohisa Hirayama
  • Patent number: 9390960
    Abstract: A method of manufacturing a semiconductor device including performing a first thermal processing a silicon substrate in a first atmosphere and at a first temperature to remove an oxide film above a surface of the silicon substrate, and after the first thermal processing, performing a second thermal processing the silicon substrate in a second atmosphere containing hydrogen and at a second temperature lower than the first temperature to terminate the surface of the silicon substrate with hydrogen.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 12, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Naoyoshi Tamura, Keita Nishigaya, Mitsuaki Hori, Hiroe Kawamura
  • Patent number: 9390781
    Abstract: A semiconductor device includes a transistor formed on a semiconductor substrate, a first insulation film formed above the semiconductor substrate, and first and second capacitors located on the first insulation film. The first capacitor includes a lower electrode, a ferroelectric, and an upper electrode. One of the lower electrode and the upper electrode is connected to an impurity region of the transistor. The second capacitor includes a first electrode, a first dielectric, a second electrode, a second dielectric, and a third electrode. The lower electrode is formed from the same material as the first electrode, the ferroelectric is formed from the same material as the first dielectric, and the upper electrode is formed from the same material as the second electrode.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: July 12, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Osamu Matsuura
  • Patent number: 9391076
    Abstract: Methods for fabricating semiconductor devices and devices therefrom are provided. A method includes providing a substrate having a semiconducting surface with first and second layers, where the semiconducting surface has a plurality of active regions comprising first and second active regions. In the first active region, the first layer is an undoped layer and the second layer is a highly doped screening layer. The method also includes removing a part of the first layer to reduce a thickness of the substantially undoped layer for at least a portion of the first active region without a corresponding thickness reduction of the first layer in the second active region. The method additionally includes forming semiconductor devices in the plurality of active regions. In the method, the part of the first layer removed is selected based on a threshold voltage adjustment required for the substrate in the portion of the first active region.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: July 12, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Scott E. Thompson, Thomas Hoffmann, Lance Scudder, Urupattur C. Sridharan, Dalong Zhao, Pushkar Ranade, Michael Duane, Paul Gregory
  • Patent number: 9385047
    Abstract: Semiconductor manufacturing processes include forming conventional channel field effect transistors (FETs) and deeply depleted channel (DDC) FETs on the same substrate and selectively forming a plurality of gate stack types where those different gate stack types are assigned to and formed in connection with one or more of a conventional channel NFET, a conventional channel PFET, a DDC-NFET, and a DDC-PFET in accordance a with a predetermined pattern.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: July 5, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Dalong Zhao, Pushkar Ranade, Bruce McWilliams
  • Patent number: 9385121
    Abstract: An integrated circuit can include a plurality of first transistors formed in a substrate and having gate lengths of less than one micron and at least one tipless transistor formed in the substrate and having a source-drain path coupled between a circuit node and a first power supply voltage. In addition or alternatively, an integrated circuit can include minimum feature size transistors; a signal driving circuit comprising a first transistor of a first conductivity type having a source-drain path coupled between a first power supply node and an output node, and a second transistor of a second conductivity type having a source-drain path coupled between a second power supply node and the output node, and a gate coupled to a gate of the first transistor, wherein the first or second transistor is a tipless transistor.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: July 5, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventor: David A. Kidd
  • Patent number: 9373626
    Abstract: An embodiment of a semiconductor device includes a plate line that is connected to ferroelectric capacitors selected from a plurality of ferroelectric capacitors and covers the selected ferroelectric capacitors and regions between the selected ferroelectric capacitors from above top electrodes.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: June 21, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Naoya Sashida
  • Patent number: 9373676
    Abstract: The semiconductor device has an insulation layer formed over a semiconductor substrate, a conductor plug 46 buried in the insulation layer, a capacitor formed above the insulation layer and the conductor plug and including a lower electrode formed of the first conduction film and the second conduction film formed over the first conduction film and formed of Pt, Pt alloy, Pd or Pd alloy, a capacitor dielectric film formed of a ferroelectric or a high dielectric formed over the lower electrode and an upper electrode formed over the capacitor dielectric film, the capacitor dielectric film contains a first element of Pb or Bi, and the concentration peak of the first element diffused in the lower electrode from the capacitor dielectric film positioning in the interface between the first conduction film and the second conduction film.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: June 21, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Wensheng Wang
  • Patent number: 9368624
    Abstract: A transistor and method of fabrication thereof includes a screening layer formed at least in part in the semiconductor substrate beneath a channel layer and a gate stack, the gate stack including spacer structures on either side of the gate stack. The transistor includes a shallow lightly doped drain region in the channel layer and a deeply lightly doped drain region at the depth relative to the bottom of the screening layer for reducing junction leakage current. A compensation layer may also be included to prevent loss of back gate control.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: June 14, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Scott E. Thompson, Lucian Shifren, Pushkar Ranade, Yujie Liu, Sung Hwan Kim, Lingquan Wang, Dalong Zhao, Teymur Bakhishev, Thomas Hoffmann, Sameer Pradhan, Michael Duane
  • Patent number: 9368430
    Abstract: A multilayer wiring in a semiconductor device includes a first lower wiring formed in a first insulating layer, a via which is formed in a second insulating layer over the first insulating layer and which is connected to the first lower wiring, and an upper wiring connected to the via. The upper wiring has an outer edge at which a nick portion is formed beside a portion of the upper wiring to which the via is connected. The formation of the nick portion at the outer edge of the upper wiring prevents the via from enlarging.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: June 14, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Yasunori Uchino, Kenichi Watanabe
  • Patent number: 9362291
    Abstract: An integrated circuit can include multiple SRAM cells, each including at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate; at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; and a bias voltage network operable to apply one or more bias voltages to the multiple SRAM cells.
    Type: Grant
    Filed: August 9, 2014
    Date of Patent: June 7, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Robert Rogenmoser, Damodar R. Thummalapally