Patents Assigned to Genesis Photonics, Inc.
  • Publication number: 20180138369
    Abstract: A light emitting diode structure including a substrate, a semiconductor epitaxial structure, a first insulating layer, a first reflective layer, a second reflective layer, a second insulating layer and at least one electrode. The substrate has a tilt surface. The semiconductor epitaxial structure at least exposes the tilt surface. The first insulating layer exposes a portion of the semiconductor epitaxial structure. The first reflective layer is at least partially disposed on the portion of the semiconductor epitaxial structure and electrically connected to the semiconductor epitaxial structure. The second reflective layer is disposed on the first reflective layer and the first insulating layer, and covers at least the portion of the tilt surface. The second insulating layer is disposed on the second reflective layer. The electrode is disposed on the second reflective layer and electrically connected to the first reflective layer and the semiconductor epitaxial structure.
    Type: Application
    Filed: January 15, 2018
    Publication date: May 17, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Yu-Yun Lo, Chih-Ling Wu, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20180130926
    Abstract: An LED includes a first-type semiconductor layer, a light emitting layer, a second-type semiconductor layer, a first metal layer, a first current conducting layer, a first bonding layer, and a second current conducting layer. The light emitting layer is located between the first-type semiconductor layer and the second-type semiconductor layer. The first metal layer is located on the first-type semiconductor layer and electrically connected to the first-type semiconductor layer. The first metal layer is located between the first current conducting layer and the first-type semiconductor layer. The first current conducting layer is located between the first bonding layer and the first metal layer. The first bonding layer is electrically connected to the first-type semiconductor layer via the first current conducting layer and the first metal layer. The first bonding layer has through holes overlapping with the first metal layer.
    Type: Application
    Filed: October 6, 2017
    Publication date: May 10, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Sheng-Tsung Hsu, Yu-Chen Kuo, Chih-Ming Shen, Tung-Lin Chuang, Tsung-Syun Huang, Jing-En Huang
  • Publication number: 20180122984
    Abstract: A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting clement, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
    Type: Application
    Filed: January 1, 2018
    Publication date: May 3, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang, Sie-Jhan Wu, Long-Lin Ke
  • Publication number: 20180123001
    Abstract: A light-emitting device including at least one light-emitting unit, a wavelength conversion adhesive layer, and a reflective protecting element is provided. The light-emitting unit has an upper surface and a lower surface opposite to each other. The light-emitting unit includes two electrode pads, and the two electrode pads are located on the lower surface. The wavelength conversion adhesive layer is disposed on the upper surface. The wavelength conversion adhesive layer includes a low-concentration fluorescent layer and a high-concentration fluorescent layer. The high-concentration fluorescent layer is located between the low-concentration fluorescent layer and the light-emitting unit. The width of the high-concentration fluorescent layer is WH. The width of the low-concentration fluorescent layer is WL. The width of the light-emitting unit is WE. The light-emitting device further satisfies the following inequalities: WE<WL, WH<WL and 0.8<WH/WE?1.2.
    Type: Application
    Filed: October 19, 2017
    Publication date: May 3, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Cheng-Wei Hung, Long-Chi Tu, Jui-Fu Chang, Chun-Ming Tseng, Yun-Chu Chen
  • Patent number: 9953956
    Abstract: A package substrate is provided. The package substrate includes a base layer having a first surface and a second surface opposite to the first surface, a plurality of through holes penetrating the base layer, a first metal layer disposed on the first surface, and a second metal layer disposed on the second surface. The first metal layer includes a closed-loop trench. A part of the second metal layer is electrically connected to the first metal layer via the through holes. The through holes are positioned at an inner part the closed-loop trench.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: April 24, 2018
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Hao-Chung Lee, Yu-Feng Lin, Xun-Xain Zhan
  • Publication number: 20180090639
    Abstract: A ?LED including an epitaxial stacked layer, a first electrode and a second electrode is provided. The epitaxial stacked layer includes a first type doped semiconductor layer, a light emitting layer and a second type doped semiconductor layer. The epitaxial stacked layer has a first mesa portion and a second mesa portion to form a first type conductive region and a second type conductive region respectively. The first electrode is disposed on the first mesa portion. The second electrode is disposed on the second mesa portion. The second electrode contacts the first type doped semiconductor layer, the light emitting layer and the second type doped semiconductor layer located at the second mesa portion. Moreover, a manufacturing method of the ?LED is also provided.
    Type: Application
    Filed: August 18, 2017
    Publication date: March 29, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20180083162
    Abstract: A nitrogen-containing semiconductor device including a first type doped semiconductor layer, a multiple quantum well layer and a second type doped semiconductor layer is provided. The multiple quantum well layer includes barrier layers and well layers, and the well layers and the barrier layers are arranged alternately. The multiple quantum well layer is located between the first type doped semiconductor layer and the second type doped semiconductor layer, and one of the well layers of the multiple quantum well layer is connected to the second type doped semiconductor layer.
    Type: Application
    Filed: September 19, 2017
    Publication date: March 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Hsin-Chiao Fang, Cheng-Hsueh Lu, Cheng-Hung Lin, Chi-Hao Cheng, Chi-Feng Huang
  • Publication number: 20180083108
    Abstract: A nitrogen-containing semiconductor device including a substrate, a first AlGaN buffer layer, a second AlGaN buffer layer and a semiconductor stacking layer is provided. The first AlGaN buffer layer is disposed on the substrate, and the second AlGaN buffer layer is disposed on the first AlGaN buffer layer. A chemical formula of the first AlGaN buffer layer is AlxGa1-xN, wherein 0?x?1. The first AlGaN buffer layer is doped with at least one of oxygen having a concentration greater than 5×1017 cm?3 and carbon having a concentration greater than 5×1017 cm?3. A chemical formula of the second AlGaN buffer layer is AlyGa1-yN, wherein 0?y?1. The semiconductor stacking layer is disposed on the second AlGaN buffer layer.
    Type: Application
    Filed: September 19, 2017
    Publication date: March 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Cheng-Hsueh Lu, Hsin-Chiao Fang, Chi-Hao Cheng, Chih-Feng Lu, Chi-Feng Huang
  • Publication number: 20180083168
    Abstract: A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Kuan-Chieh Huang, Shao-Ying Ting, Jing-En Huang, Yi-Ru Huang
  • Patent number: 9922963
    Abstract: A light-emitting device includes a substrate, a light-emitting component, a wavelength conversion component, an adhesive and a reflective layer. The light-emitting component is disposed on the substrate. The wavelength conversion component includes a high-density phosphor layer and a lower-density phosphor layer. The adhesive is formed between the light-emitting device and the high-density phosphor layer. The reflective layer is formed above the substrate and covers a lateral surface of the light-emitting component, a lateral surface of the adhesive and a lateral surface of the wavelength conversion component.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: March 20, 2018
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Cheng-Wei Hung, Jui-Fu Chang, Chin-Hua Hung, Yu-Feng Lin
  • Publication number: 20180053742
    Abstract: A method of mass transferring electronic devices includes following steps. A wafer is provided. The wafer includes a substrate and a plurality of electronic devices. The electronic devices are arranged in a matrix on a surface of the substrate. The wafer is attached to a temporary fixing film. The wafer is cut so that the wafer is divided into a plurality of blocks. Each of the blocks includes at least a part of the electronic devices and a sub-substrate. The temporary fixing film is stretched so that the blocks on the temporary fixing film are separated from each other as the temporary fixing film is stretched. At least a part of the blocks is selected as a predetermined bonding portion, and each of the blocks in the predetermined bonding portion is transferred to a carrying substrate in sequence, so that the electronic devices in the predetermined bonding portion arc bonded to the carrying substrate. The sub-substrates of the blocks are removed.
    Type: Application
    Filed: August 18, 2017
    Publication date: February 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20180047869
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm ?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Application
    Filed: October 2, 2017
    Publication date: February 15, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Jyun-De Wu, Yu-Chu Li
  • Publication number: 20180040594
    Abstract: A light emitting module including a light emitting device package structure and a heat dissipation structure is provided. The light emitting device package structure includes light emitting devices, a patterned reflective element and a patterned conductive layer. The patterned reflective element is disposed around side surfaces of the light emitting devices and exposes a first bottom surface of a first pad and a second bottom surface of a second pad. The patterned conductive layer is disposed on the first bottom surface of the first pad and the second bottom surface of the second pad. The light emitting devices are electrically connected to each other in a series connection, a parallel connection or a series-parallel connection through the patterned conductive layer. The heat dissipation structure is disposed below the light emitting device package structure and includes a heat dissipation unit and a patterned circuit layer disposed on the heat dissipation unit.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Hao-Chung Lee, Yu-Feng Lin
  • Patent number: 9882096
    Abstract: An edge lighting light emitting diode (LED) structure and a method of manufacturing the same are provided. The edge lighting LED structure includes a substrate, an electrode pattern, a chip, an encapsulation layer and a fluorescent layer. The electrode pattern at least includes two first conducting portions separately disposed on an upper surface of the substrate, two second conducting portions separately disposed on a lower surface of the substrate, and two conducting holes separately vertically penetrating through the substrate, each conducting hole connects a first conducting portion and a second conducting portion, and the conducting holes are exposed on a lateral surface of the substrate. A second surface of the chip is disposed on the first conducting portions. A top surface of the encapsulation layer exposes and is aligned with the first surface of the chip. The fluorescent layer covers a first surface of the chip.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: January 30, 2018
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Cheng-Wei Hung, Yu-Feng Lin
  • Publication number: 20180019232
    Abstract: A light emitting component includes an epitaxial structure, an adhesive layer, a first reflective layer, a second reflective layer, a block layer, a first electrode and a second electrode. The epitaxial structure includes a substrate, a first semiconductor layer, a light emitting layer and a second semiconductor layer. The adhesive layer is disposed on the second semiconductor layer of the epitaxial structure. The first reflective layer is disposed on the adhesive layer. The second reflective layer is disposed on the first reflective layer and extended onto the adhesive layer. A projection area of the second reflective layer is larger than a projection area of the first reflective layer. The block layer is disposed on the second reflective layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer.
    Type: Application
    Filed: September 25, 2017
    Publication date: January 18, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang
  • Patent number: 9871169
    Abstract: A light emitting diode structure including a substrate, a semiconductor epitaxial layer and a reflective conductive structure layer is provided. The semiconductor epitaxial layer is disposed on the substrate and exposes a portion of the substrate. The reflective conductive structure layer covers a part of the semiconductor epitaxial layer and the portion of the substrate exposed by the semiconductor epitaxial layer.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: January 16, 2018
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Yi-Ru Huang, Yu-Yun Lo, Chih-Ling Wu, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20180006000
    Abstract: A light source device including a substrate, a plurality of first light emitting diode (LED) chips, and at least one second LED chip is provided. The substrate has an upper surface. The plurality of first LED chips are disposed on the upper surface and electrically connected to the substrate. Each of the first LED chips includes a first chip substrate, a first semiconductor layer, and a plurality of first electrodes, and the first electrodes are disposed on the upper surface of the substrate. The second LED chip is disposed on the upper surface and electrically connected to the substrate. The second LED chip includes a second chip substrate, a second semiconductor layer, and a plurality of second electrodes. A thickness of the second chip substrate is different from than a thickness of the first chip substrate, and the second electrodes are disposed on the upper surface of the substrate.
    Type: Application
    Filed: August 28, 2017
    Publication date: January 4, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Cheng-Yen Chen, Yun-Li Li, Po-Jen Su
  • Patent number: 9859462
    Abstract: A semiconductor structure includes a silicon substrate, an aluminum nitride layer and a plurality of grading stress buffer layers. The aluminum nitride layer is disposed on the silicon substrate. The grading stress buffer layers are disposed on the aluminum nitride layer. Each grading stress buffer layer includes a grading layer and a transition layer stacked up sequentially. A chemical formula of the grading layer is Al1-xGaxN, wherein the x value is increased from one side near the silicon substrate to a side away from the silicon substrate, and 0?x?1. A chemical formula of the transition layer is the same as the chemical formula of a side surface of the grading layer away from the silicon substrate. The chemical formula of the transition layer of the grading stress buffer layer furthest from the silicon substrate is GaN.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: January 2, 2018
    Assignee: Genesis Photonics Inc.
    Inventors: Chi-Feng Huang, Sheng-Han Tu
  • Patent number: 9859459
    Abstract: A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 2, 2018
    Assignee: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang, Sie-Jhan Wu, Long-Lin Ke
  • Patent number: 9831399
    Abstract: A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: November 28, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Kuan-Chieh Huang, Shao-Ying Ting, Jing-En Huang, Yi-Ru Huang