Abstract: A method of digital image storage utilizing a number of image storage memories, utilizing separate and independent write and read controls to the storage memories, utilizing write masking to selectively write to the storage memories, utilizing full or partial read from the storage memories to simultaneously access corresponding image data from multiple images, while permitting a non-integral number of image delays between input and output.
Abstract: A customer-maintained routing system for providing routing to a network provider for incoming calls from clients to the customer comprises a processor having a data link adapted for connection to a customer access point provided by the network provider, a router adapted to execute on the processor and to provide routing to the network via the customer access point, and a metadata-based information system maintained in RAM accessible to the processor and containing condensed client characteristics. Upon receiving a request from the network including a call identifier, the router accesses the database using the identifier as a key, retrieves client characteristics from the information system, and provides a destination for the call to the network based on the retrieved client characteristics. In some embodiments the processor is linked to plural customer sites by a wide area data network.
Type:
Grant
Filed:
June 6, 2000
Date of Patent:
October 2, 2001
Assignee:
Genesys Telecommunications Laboratories Inc.
Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract: A multilayercd substrate. The substrate has a plurality of particles defined in a pattern in the substrate at a selected depth underneath the surface of the substrate. The particles are at a concentration at the selected depth to define a substrate material to be removed above the selected depth. The substrate material is removed after forming active devices on the substrate material using, for example, conventional semiconductor processing techniques. The pattern is defined in a manner to substantially prevent a possibility of detachment of the substrate material to be removed during conventional thermal processes of greater than about room temperature or greater than about 200 degrees Celsius.
Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) in a selected manner through a surface of a donor substrate (10) to form a pattern at a selected depth (20) underneath the surface. The particles have a concentration sufficiently high to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract: A technique for forming a film of material having active devices from a donor substrate. The technique has a step of introducing energetic particles in a selected manner through a surface and active devices of a donor substrate a selected depth underneath the active devices, where the particles have a relatively high concentration to define a donor substrate material above the selected depth. The surface of the donor substrate is attached to a release layer on a transfer substrate. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate at the selected depth, whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate. The transfer substrate holds the cleaved material and is used to transfer the cleaved material with active devices onto a target substrate.
Abstract: A system for routing Internet Protocol Network Telephony calls to remote destinations has a routing processor adapted for eliciting information from a caller and a database with information relating to availability of selectable destinations. Incoming calls are forwarded to a destination selected based on the information in the database, and the elicited information is sent separately as a data packet to the destination to be re-associated with the call based on the destination address of the call.
Type:
Grant
Filed:
October 10, 1997
Date of Patent:
September 11, 2001
Assignee:
Genesys Telecommunications Laboratories, Inc.
Abstract: A method for treating a film of material, which can be defined on a substrate, e.g., silicon. The method includes providing a substrate comprising a cleaved surface, which is characterized by a predetermined surface roughness value. The substrate also has a distribution of hydrogen bearing particles defined from the cleaved surface to a region underlying said cleaved surface. The method also includes increasing a temperature of the cleaved surface to greater than about 1,000 Degrees Celsius while maintaining the cleaved surface in an etchant bearing environment to reduce the predetermined surface roughness value by about fifty percent and greater. Preferably, the value can be reduced by about eighty or ninety percent and greater, depending upon the embodiment.
Abstract: The present invention provides polypeptides comprising an immunogenic portion of a M. vaccae soluble protein and DNA molecules encoding such polypeptides, together with methods for their use in the diagnosis and treatment of mycobacterial infection. Methods for enhancing the immune response to an antigen including administration of M. vaccae culture filtrate or delipidated M. vaccae cells are also provided.
Type:
Grant
Filed:
August 29, 1996
Date of Patent:
September 4, 2001
Assignee:
Genesis Research & Development Corporation Limited
Inventors:
Paul Tan, Jun Hiyama, Elizabeth Visser, Linda Scott
Abstract: A network-based system for distributing object-oriented CTI scripts is provided. The system includes, at least one source communication center enabled with an object-oriented-programming-system for generating and distributing the CTI scripts, at least one receiving communication center enabled with an object-oriented-programming-system for receiving and implementing the CTI scripts, an instance of a descriptor-language-converter application installed and operational within the source communication center and an instance of the descriptor-language-converter application installed and operational within receiving communication center.
Type:
Grant
Filed:
April 28, 2000
Date of Patent:
September 4, 2001
Assignee:
Genesys Telecommunications Laboratories, Inc.
Inventors:
Konstantin Kishinsky, Nikolay Anisimov, Gregory Pogossiants, Pavel Postupalski
Abstract: An improved workcell is provided with a door hinged at a midpoint between the opposite sides and maintained in a parallel relationship to the workcell access opening, thereby minimizing the clearance space required to open and close the door. The workcell is formed of a plurality of posts and wall panels which can be quickly and easily assembled and disassembled, such that the workcell is portable. The wall panels are pinned to the posts and include hollow ribs to receive cabling, wiring, and tubing for work functions within the workcell.
Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract: A side-by-side robot workcell includes two tables each of which is movable from a work position to a load position. Linkages are connected to the tables and cause the tables to have a slow speed at the time the tables approach either the load or the work position, and a faster speed in the middle of the movement between the work and load positions.
Abstract: A lithium-ion-conductive solid electrolyte includes a lithium-ion-conductive substance expressed by a general formula Li2S-GeS2-X wherein “X” is at least one member selected from the group consisting of Ga2S3 and ZnS, or Li2S-SiS2-P2S5. It is superb in terms of stability and safety at elevated temperatures, since it is a crystalline solid of high ion conductivity. It can be applied to a solid electrolyte for lithium batteries.
Type:
Grant
Filed:
December 8, 1998
Date of Patent:
August 21, 2001
Assignees:
Toyota Jidosha Kabushiki Kaisha, Genesis Research Institute, Inc.
Abstract: A method for implanting a substrate face using a plasma processing apparatus (10). The method includes providing a substrate (e.g., wafer, panel) (22) on a face of a susceptor. The substrate has an exposed face, which has a substrate diameter that extends from a first edge of the substrate to a second edge of the substrate across a length of the substrate. The method also includes forming a plasma sheath (26) around the face of the substrate. The plasma sheath has a dark space distance “D” that extends in a normal manner from the exposed face to an edge of the plasma sheath. The dark space distance and the substrate diameter comprise a ratio between the dark space distance and the substrate diameter. The ratio is about one half and less, which provides a substantially uniform implant.
Abstract: A receiver to recover data encoded at high speed in a signal over a serial communication channel. A static phase determination circuit indicates whether the signal is early, late or neutral relative to a sampling clock. The sampling clock is used to oversample the signal to generate multiple samples. A token analyzer examines the transitions around a current symbol to determine any short term phase shifts of the boundaries between symbols. The short term phase shifts and the static phase together may be used to accurately select the samples representing the symbols without requiring extensive processing.
Abstract: A plasma treatment system (200) for implantation with a novel susceptor with a perforated shield (201) and collection devices (221). The system (200) has a variety of elements such as a chamber in which a plasma is generated in the chamber. The system (200) also has a susceptor disposed in the chamber to support a silicon substrate, which has a surface. The perforated shield (201) draws ions from the implantation toward and through the shield to improve implant uniformity in the substrate. The collection device accumulates charge that can detrimentally influence the substrate during processing. In a specific embodiment, the chamber has a plurality of substantially planar rf transparent windows (26) on a surface of the chamber. The system (200) also has an rf generator (66) and at least two rf sources in other embodiments.
Abstract: An automatic sampling control system for digital monitors. A clock generation circuit generates a sampling clock. A phase controller modifies the phase of the sampling clock by a phase amount. An ADC samples a frame of an analog display signal to generate digital samples. A value which is a function of the samples is generated. The function generally generates a larger value with correspondingly large sample values. The phase amount is modified for successive image frames until a maximum function value is generated. When successive image frames do not change substantially in image content, the phase amount represents the optimal phase change for the sampling clock. If the image content is changing substantially, the phase adjustment may be disabled.
Abstract: A method of de-interlacing used to convert an interlaced video signal to a progressively scanned format utilizing vertical temporal filtering to generate the missing lines, utilizing appropriate filter coefficients to give a desired vertical frequency response, and filter utilizing coefficients such that the total combined contribution from all fields is unity while the total contribution from each individual field is chosen so as to boost higher temporal frequencies which has the perceived effect of increasing the sharpness of moving edges. Furthermore, in order to avoid certain unwanted artifacts, the lines of the current field are modified using a vertical temporal filter with similar temporal boosting properties to that which was used to generate the missing lines.
Type:
Grant
Filed:
May 12, 1998
Date of Patent:
July 24, 2001
Assignee:
Genesis Microchip Inc.
Inventors:
Zhongde Wang, Steve Selby, Lance Greggain