Abstract: A method effective in treating a viral infection involves administering a therapeutically effective amount of at least one compound capable of inhibiting expression of at least a portion of a virus genome containing an internal ribosomal entry site, or a pharmaceutically acceptable salt thereof. The compound has an azole moiety comprising a five member heterocyclic ring containing at least one nitrogen atom, a hydrophobic moiety bonded to the heterocyclic ring of the azole, and a donor/acceptor moiety bonded to the heterocyclic ring having at least one of hydrogen bond donor and a hydrogen bond acceptor.
Type:
Grant
Filed:
March 27, 2017
Date of Patent:
February 14, 2023
Assignees:
HOWARD UNIVERSITY, GEORGETOWN UNIVERSITY
Abstract: A method that includes introducing at least one analyte into a gas plasma; generating neutral species from atoms of the analyte in the gas plasma; preferentially transporting the neutral species downstream of the gas plasma relative to any ions produced in the gas plasma; and reacting the neutral species of the analyte with at least one reagent ion downstream of the plasma resulting in ion species of the analyte, wherein the at least one reagent ion is supplied by an independent ion source.
Type:
Application
Filed:
February 25, 2021
Publication date:
January 26, 2023
Applicant:
Georgetown University
Inventors:
Kaveh Jorabchi, Joseph Lesniewski, Kunyu Zheng, Samuel White
Abstract: A microfluidic device for non-invasively and passively accessing interstitial fluid from a patient includes a substrate containing multiple vertical micro channels therethrough, wherein at a first end of each of the multiple vertical micro channels a microheater is formed for controllably ablating a portion of dry dead skin cells to access the interstitial fluid; and wherein at a second end of each of the multiple vertical micro channels is a horizontal micro channel for receiving accessed interstitial fluid from a vertical micro channel and guiding the accessed interstitial fluid to a common collection port.
Abstract: Provided are methods of treating pulmonary artery hypertension with a Kv11.1 (ERG or hERG1) channel inhibitor. In certain embodiments, the Kv11.1 channel inhibitor is dofetilide. In certain embodiments, a subject to be treated using a method of the disclosure is not in need of treatment for an irregular heart rhythm, e.g., atrial fibrillation.
Type:
Grant
Filed:
May 21, 2020
Date of Patent:
December 20, 2022
Assignee:
GEORGETOWN UNIVERSITY
Inventors:
Tinatin I. Brelidze, Yuichiro J. Suzuki, Nataliia Shults, Vladyslava Rybka
Abstract: A composition comprising a compound of formula I: wherein n is 5, and R is methyl; and the composition is in an essentially guest-free solid form.
Abstract: Polymer embodiments comprising nanohoop-containing polymer backbones are described, along with methods of making and using the same. The polymer embodiments exhibit unique radial and linear conjugation and can be used in a variety of devices, such as electronic and/or optoelectronic devices.
Type:
Grant
Filed:
September 25, 2020
Date of Patent:
November 22, 2022
Assignees:
University of Oregon, Georgetown University, The Johns Hopkins University
Abstract: Cavitand compositions that comprise void spaces are disclosed. The void spaces may be empty, which means that voids are free of guest molecules or atoms, or the void spaces may comprise guest molecules or atoms that are normally in their gas phase at standard temperature and pressure. These cavitands may be useful for industrial applications, such as the separation or storage of gasses. Novel cavitand compounds are also disclosed.
Abstract: Provided are methods and devices useful for treating a respiratory disease or disorder involving the central or upper airways. The methods and devices deliver to central or upper airways of a subject a vapor or aerosol comprising an effective amount of an active ingredient selected from the group consisting of menthol, menthone, neomenthol, isomenthol, and menthofuran. The methods are useful for treating conditions including cough, asthma, bronchitis, and allergic rhinitis.
Abstract: Technologies are described for retrieving documents using image representations in the documents and is based on intra-image features. The identification of elements within an image representation can allow for deeper understanding of the image representation and for better relating image representations based on their intra-image features. The intra-image features present in image representations can be used in searches. Search results can further be reranked to improve search results. For example, reranking can allow search results to conform to intra-image dominant image features.
Abstract: Technologies are described for reconstructing facial models which are preserved images or images captured from security cameras. The reconstructed models can be three-dimensional (3D) point clouds and can be compared to existing facial models and/or other reconstructed models based on physical geometry. The 3D point cloud models can be encoded into one or more latent space feature vector representations which can allow both local and global geometric properties of a face to be described. The one or more feature vector representations of a target face can be used individually or in combination with other descriptors for recognition, retrieval, and classification tasks. Neural networks can be used in the encoding of the one or more feature vector representations.
Abstract: Provided herein are methods for treating nonalcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH) in a subject, comprising administering to a subject having NAFLD or NASH an effective amount of a SLC25A1 inhibitor.
Abstract: Technologies are described for reconstructing physical objects which are preserved or represented in pictorial records. The reconstructed models can be three-dimensional (3D) point clouds and can be compared to existing physical models and/or other reconstructed models based on physical geometry. The 3D point cloud models can be encoded into one or more latent space feature vector representations which can allow both local and global geometric properties of the object to be described. The one or more feature vector representations of the object can be used individually or in combination with other descriptors for retrieval and classification tasks. Neural networks can be used in the encoding of the one or more feature vector representations.
Abstract: One aspect of the present disclosure relates to a system for providing non-invasive, high frequency ventilation to a neonate or an infant in need thereof. The system can include a tubing array, a vibration device, and a bifurcated cannula. The tubing array can be adapted to receive a flow of pressurized gas therethrough. The vibration device can be fluidly coupled to the tubing array and configured to generate and apply a jet of air to the flow of pressurized gas. The bifurcated cannula can be fluidly coupled to the tubing array and have independently movable first and second prongs that are sized and dimensioned for insertion into first and second nostrils, respectively, of the neonate or the infant.
Abstract: A system and method for connecting one or more client applications with one or more knowledge representation servers and communicating there between includes an application programming interface (API) and a hypergraph transfer protocol (HGTP), for facilitating communication between the one or more client applications and one or more knowledge representation servers responsive to a client application request. The client application request includes an API call for a specific entity that is received by a first knowledge representation server. If the first knowledge representation server does not manage the specific entity, the first knowledge representation server forwards the specific entity call to a second knowledge representation server via the HGTP using a universal unique identifier (UUID) associated with the specific entity having encoded therein a network address for the second knowledge representation server.
Abstract: Methods of inducing apoptosis and inhibiting proliferation in YAP-dependent cancer cells, involving contacting the cells with one or more inhibitors of YAP and one or more inhibitors of SOX2. In addition, methods of treating or preventing YAP-dependent cancer in subjects, involving administering to the subject one or more inhibitors of YAP and one or more inhibitors of SOX2.
Abstract: Provided herein are methods of treating a lysosomal storage disorder (LSD) in a subject and methods of promoting lysosomal clearance in one or more cells of a subject.
Abstract: Provided herein are methods for treating a cholecystokinin (CCK) receptor-expressing cancerous tumor in a subject. The methods comprising administering to the subject an effective amount of a CCK receptor inhibitor and an effective amount of an immune checkpoint inhibitor, wherein the CCK receptor inhibitor inhibits one or more CCK receptors selected from the group consisting of a CCK-A receptor, a CCK-B receptor and a CCK-C receptor, and wherein the immune checkpoint inhibitor is a programmed cell death protein 1 (PD1) inhibitor or a cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitor.
Type:
Application
Filed:
February 23, 2022
Publication date:
August 18, 2022
Applicant:
GEORGETOWN UNIVERSITY
Inventors:
Jill P. SMITH, Louis WEINER, Sandra JABLONSKI, Sandeep NADELLA, Shangzi WANG
Abstract: Provided herein are methods of treating or preventing a neurodegenerative disease, a myodegenerative disease or a prion disease in a subject comprising administering a tyrosine kinase inhibitor.
Abstract: Embodiments of the present systems and methods may provide techniques to predict the success or failure of a drug used for disease treatment. For example, a method of determining drug efficacy may include, for a plurality of patients, generating a directed acyclic graph from health related information of each patient comprising nodes representing a medical event of the patient, at least one first edge connecting the first node to an additional node, each additional edge connecting nodes representing two consecutive medical events, the edge having a weight based on a time difference between the two consecutive medical events, capturing a plurality of features from each directed acyclic graph, generating a binary graph classification model on captured features of each directed acyclic graph, determining a probability that a drug or treatment will be effective using the binary graph classification model, and determining a drug to be prescribed to a patient based on the determined probability.