Patents Assigned to GSI Group Corporation
  • Patent number: 9281651
    Abstract: The resonator includes a lasing medium having a thickness, a first mirror disposed at a first end of the lasing medium and a second mirror disposed at a second end of the lasing medium. The first and second mirror cooperate to fold an intra-cavity laser beam along a plurality of paths through the lasing medium, thereby defining a boundary of a superfluous region within the resonator, wherein the intra-cavity laser beam does not pass through the superfluous region. The first mirror and the second mirror form a laser resonator for a parasitic laser mode, a portion of which is located within the superfluous region. A parasitic mode suppressor is located within the superfluous region of the resonator.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: March 8, 2016
    Assignee: GSI Group Corporation
    Inventors: Linh K. Nguyen, Jason W. Bethel, Giang B. Nguyen, Melvin J. Lima
  • Patent number: 8612065
    Abstract: A position encoder provides one or more trigger outputs based on position signals developed within the encoder, in addition to traditional position output signals used by other system components such as a motion controller. The trigger outputs may be used directly by a triggered device, bypassing the motion controller and obviating any separate trigger generation electronics. The trigger output(s) can be fully synchronous with the encoder's position output signal(s) with essentially no latency or jitter, increasing accuracy and providing improved system performance. The trigger functionality can be incorporated in a variety of encoder types (e.g., absolute and incremental) and technologies (optical, magnetic, inductive etc.), and used in conjunction with different position output signal formats (e.g., quadrature, serial).
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: December 17, 2013
    Assignee: GSI Group Corporation
    Inventors: Andrew M. Goldman, Paul A. Remillard
  • Publication number: 20130200050
    Abstract: The present invention relates to the field of laser processing methods and systems, and specifically, to laser processing methods and systems for laser processing multi-material devices. Systems and methods may utilize high speed deflectors to improve processing energy window and/or improve processing speed. In some embodiments, a deflector is used for non-orthogonal scanning of beam spots. In some embodiment, a deflector is used to implement non-synchronous processing of target structures.
    Type: Application
    Filed: September 10, 2012
    Publication date: August 8, 2013
    Applicant: GSI GROUP CORPORATION
    Inventors: Jonathan S. Ehrmann, Joseph J. Griffiths, James J. Cordingley, Donald J. Svetkoff, Shepard D. Johnson, Michael Plotkin
  • Patent number: 8379204
    Abstract: A method makes a discrete adjustment to static alignment of a laser beam in a machine for selectively irradiating conductive links on or within a semiconductor substrate using the laser beam. The laser beam propagates along a beam path having an axis extending from a laser to a laser beam spot at a location on or within the semiconductor substrate. The method generates, based on at least one measured characteristic of the laser beam, at least one signal to control an adjustable optical element of the machine affecting the laser beam path. The method also sends said at least one signal to the adjustable optical element. The method then adjusts the adjustable optical element in response to said at least one signal so as to improve static alignment of the laser beam path axis.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: February 19, 2013
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Michael Plotkin, John Keefe
  • Patent number: 8367968
    Abstract: Laser pulses are selected from a group of closely spaced laser pulses with an optical modulator by adjusting pulse timing relative to an impingement interval. An adjusted pulse is moved from an impingement interval to a non-impingement interval and is blocked. The blocked laser source is stabilized by running nearly continuously. Pulse selection with multiple laser sources is achieved with a single acousto-optic modulator.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: February 5, 2013
    Assignee: GSI Group Corporation
    Inventors: James Cordingley, Dimitry Maltsev, Michael Plotkin
  • Publication number: 20130027795
    Abstract: A method is disclosed of fabricating a mirror for use in limited rotation motor systems, said method comprising the steps of providing a mirror structure including at least one wall section, and exposing the at least one wall section to a fluid etching agent to thereby provide chemical milling of the mirror structure.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 31, 2013
    Applicant: GSI GROUP CORPORATION
    Inventor: David C. Brown
  • Publication number: 20130010349
    Abstract: The invention provides a method of laser processing that includes the steps of: generating a sequence of RF pulses corresponding to a sequence of laser pulses having a laser pulse repetition rate, the RF pulses including transmitting RF pulses at transmitting RF frequencies and non-transmitting RF pulses at non-transmitting RF frequencies for causing the sequence of laser pulses to be deflected in respective transmitting and non-transmitting directions, each RF pulse comprising an RF frequency, an RF amplitude and a duration; controlling each RF pulse such that the sequence of RF pulses provides a modulated RF drive signal that is modulated to provide a balanced thermal loading on the acousto-optic deflector; applying the modulated RF drive signal to the acousto-optic deflector; and deflecting at least one laser pulse with the acousto-optic deflector using the modulated RF drive signal to irradiate a selected target position with a predetermined pulse energy.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: GSI GROUP CORPORATION
    Inventors: James Cordingley, Dimitry Maltsev
  • Patent number: 8329600
    Abstract: A method, system and scan lens for use therein are provided for high-speed, laser-based, precise laser trimming at least one electrical element along a trim path. The method includes generating a pulsed laser output with a laser, the output having one or more laser pulses at a repetition rate. A fast rise/fall time, pulse-shaped q-switched laser or an ultra-fast laser may be used. Beam shaping optics may be used to generate a flat-top beam profile. Each laser pulse has a pulse energy, a laser wavelength within a range of laser wavelengths, and a pulse duration. The wavelength is short enough to produce desired short-wavelength benefits of small spot size, tight tolerance, high absorption and reduced or eliminated heat-affected zone (HAZ) along the trim path, but not so short so as to cause microcracking. In this way, resistance drift after the trimming process is reduced.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: December 11, 2012
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Jonathan S. Ehrmann, Joseph V. Lento, Bruce L. Couch, Yun Fee Chu, Shepard D. Johnson
  • Publication number: 20120276754
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Application
    Filed: July 3, 2012
    Publication date: November 1, 2012
    Applicant: GSI GROUP CORPORATION
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20120241427
    Abstract: A method of processing material of device elements by laser interaction is disclosed. According to one aspect, the method includes generating a pulsed laser processing output along a laser beam axis, the output including a plurality of laser pulses triggered sequentially at times determined by a pulse repetition rate. A trajectory relative to locations of device elements to be processed is generated. A position of one or more designated device elements relative to an intercept point position on the trajectory at one or more laser pulse times is determined, and a laser beam is deflected based on the predicted position within a predetermined deflection range. According to some aspects, the predetermined deflection range may correspond to a compass rose or cruciform field shape. As a result, a deflection accuracy for laser processing may be improved.
    Type: Application
    Filed: February 24, 2012
    Publication date: September 27, 2012
    Applicant: GSI Group Corporation
    Inventors: Dimitry Maltsev, Dmitry N. Romashko, Michael Plotkin, Jonathan S. Ehrmann, James J. Cordingley
  • Patent number: 8269137
    Abstract: The present invention relates to the field of laser processing methods and systems, and specifically, to laser processing methods and systems for laser processing multi-material devices. Systems and methods may utilize high speed deflectors to improve processing energy window and/or improve processing speed. In some embodiments, a deflector is used for non-orthogonal scanning of beam spots. In some embodiment, a deflector is used to implement non-synchronous processing of target structures.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: September 18, 2012
    Assignee: GSI Group Corporation
    Inventors: Jonathan S. Ehrmann, Joseph J. Griffiths, James J. Cordingley, Donald J. Svetkoff, Shepard D. Johnson, Michael Plotkin
  • Patent number: 8253066
    Abstract: Laser-based methods and systems for removing one or more target link structures of a circuit fabricated on a substrate includes generating a pulsed laser output at a predetermined wavelength less than an absorption edge of the substrate are provided. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target link structure to reduce the reflectivity of the target link structure and efficiently couple the focused laser output into the target link structure to remove the target link structure without damaging the substrate.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: August 28, 2012
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Patent number: 8217304
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: July 10, 2012
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 8193468
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: June 5, 2012
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Joseph J. Griffiths, Donald V. Smart
  • Publication number: 20120083049
    Abstract: A method is disclosed for on-the-fly processing at least one structure of a group of structures with a pulsed laser output, The method includes the steps of relatively positioning the group of structures and the pulsed laser output axis with non-constant velocity, and applying the pulsed laser output to the at least one structure of the group of structures during the step of relatively positioning the group of structures and the pulsed laser output axis with non-constant velocity.
    Type: Application
    Filed: November 23, 2011
    Publication date: April 5, 2012
    Applicant: GSI GROUP CORPORATION
    Inventors: Shepard D. Johnson, Bo Gu
  • Patent number: 8106329
    Abstract: A laser system for processing conductive link structures includes a seed laser generating a seed laser beam. The seed laser is sliced by a modulator into a user configurable series of pulses and the pulses are optically amplified and applied to a conductive link structure. Preferably, the bandwidth of the seed laser is less than 1 nm with an IR center frequency, and the frequency of the laser light of the pulses is doubled or quadrupled prior to application to the conductive structure. Preferably, the pulses are about 1-18 second pulsewidth and are separated by 100-400 ns.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 31, 2012
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Joseph J. Griffiths, Joohan Lee
  • Patent number: 8084706
    Abstract: A method is disclosed for on-the-fly processing at least one structure of a group of structures with a pulsed laser output. The method includes the steps of relatively positioning the group of structures and the pulsed laser output axis with non-constant velocity, and applying the pulsed laser output to the at least one structure of the group of structures during the step of relatively positioning the group of structures and the pulsed laser output axis with non-constant velocity.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: December 27, 2011
    Assignee: GSI Group Corporation
    Inventors: Shepard D. Johnson, Bo Gu
  • Publication number: 20110297851
    Abstract: In a system for severing conductive links by laser irradiation to repair electronic devices, multiple laser beams are deflected at high-speed to target selected links for processing by positioning laser spots in a two dimensional pattern during relative motion of a substrate and a beam delivery system. As link targeting flexibility is increased, selection may be required from a large number of addressable link pairs. Various embodiments advantageously use beam deflection and beam splitting to improve memory repair processing rates.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 8, 2011
    Applicant: GSI GROUP CORPORATION
    Inventors: William Lauer, Jonathan S. Ehrmann, Joseph J. Griffiths
  • Publication number: 20110218695
    Abstract: A position encoder provides one or more trigger outputs based on position signals developed within the encoder, in addition to traditional position output signals used by other system components such as a motion controller. The trigger outputs may be used directly by a triggered device, bypassing the motion controller and obviating any separate trigger generation electronics. The trigger output(s) can be fully synchronous with the encoder's position output signal(s) with essentially no latency or jitter, increasing accuracy and providing improved system performance. The trigger functionality can be incorporated in a variety of encoder types (e.g., absolute and incremental) and technologies (optical, magnetic, inductive etc.), and used in conjunction with different position output signal formats (e.g., quadrature, serial).
    Type: Application
    Filed: March 5, 2010
    Publication date: September 8, 2011
    Applicant: GSI GROUP CORPORATION
    Inventors: Andrew M. Goldman, Paul A. Remillard
  • Publication number: 20110210105
    Abstract: Link processing systems and methods use controlled two dimensional deflection of a beam along an optical axis trajectory to process links positioned along and transverse to the trajectory during a pass of the optical axis along the trajectory. Predictive position calculations allow link blowing accuracy during constant velocity and accelerating trajectories.
    Type: Application
    Filed: December 22, 2010
    Publication date: September 1, 2011
    Applicant: GSI GROUP CORPORATION
    Inventors: Dmitry N. Romashko, Michael Plotkin, Jonathan S. Ehrmann, James J. Cordingley, Shepard D. Johnson