Patents Assigned to GSI Group Corporation
  • Patent number: 7238913
    Abstract: An energy beam machining system includes an emitter for emitting an energy beam and beam adjusting optics, such as a zoom telescope, for adjusting the pupil size of the system to multiple values. The adjusting of the pupil size can be carried out automatically, semi-automatically, or manually. In manual modes, instructions can be presented to the operator (e.g., via a monitor or pre-programmed audio instruction) indicating how to adjust pupil size. A focus lens focuses the adjusted beam directed along each path at a different focal point within a scan field encompassed in the field of view of the focus lens. Beam directing optics are configured to enable multiple scan fields within the field of view of the focus lens.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: July 3, 2007
    Assignee: GSI Group Corporation
    Inventors: Anton T. Kitai, Jonathan S. Ehrmann
  • Publication number: 20070144026
    Abstract: A flexible optical marker is applied to an optical scale substrate to make an optical scale assembly for an optical position encoder. The marker may be a limit marker, index marker, or other type of marker. The marker substrate may be a plastic film such as polyester, singulated from a “recombine” roll created by a web process. The marker has a microstructured pattern on one surface that is covered with a reflective metal coating. The marker also has an adhesive layer and is affixed to the optical scale substrate by a process of aligning the marker to an edge of the scale and then applying pressure to the upper surface of the marker. The marker may be applied with a handle portion that is separated from the marker after the marker is affixed. The marker may be especially useful with a flexible scale substrate such as a metal tape substrate.
    Type: Application
    Filed: November 9, 2006
    Publication date: June 28, 2007
    Applicant: GSI Group Corporation
    Inventors: Donald Mitchell, Donald Grimes, William Thorburn, Stuart Dodson, Keith Hinrichs, Andrew Goldman, Joel Petersen, Christopher Rich
  • Publication number: 20070121485
    Abstract: A method is disclosed for adjusting a proportional, integral, derivative controller in a limited rotation motor system. The method includes the step of providing a first frequency domain sequence that is representative of a frequency domain representation of a motor control signal responsive to a first digital signal that is representative of the motor control signal. The method also includes the step of providing a second frequency domain sequence that is representative of a frequency domain representation of a position detection signal responsive to a second digital signal that is representative of the position detection signal.
    Type: Application
    Filed: December 5, 2006
    Publication date: May 31, 2007
    Applicant: GSI GROUP CORPORATION
    Inventor: Yuhong Huang
  • Publication number: 20070117227
    Abstract: A method and system for iteratively, selectively tuning a parameter of a doped workpiece, such as the impedance of an integrated semiconductor device, by modifying the dopant profile of a region of relatively low dopant concentration by controlled diffusion of dopants from one or more adjacent regions of relatively higher dopant concentration through melting action caused by one or more laser pulses created by a Q-switched, pulsed laser are disclosed. In particular, the method and system are directed to increasing the dopant concentration of the region of lower dopant concentration, but may also be adapted to decrease the dopant concentration of the region.
    Type: Application
    Filed: October 24, 2006
    Publication date: May 24, 2007
    Applicant: GSI GROUP CORPORATION
    Inventor: Bo Gu
  • Publication number: 20070096763
    Abstract: A laser processing system implements a method for aligning a probe element (e.g., a probe pin) with a device interface element (e.g., a contact pad of a circuit substrate). First, the laser processing system generates an optical reference beam at one or more predetermined positions to calibrate a reference field. The laser processing system then detects a position of the probe element in the reference field. The laser processing system also determines a relative position of the device interface element in the reference field. Based on the position of the probe element and the device interface element, the laser processing system then initiates alignment of the probe element and the device interface element. In one application, alignment of the probe element and the device interface element further includes contacting the probe element to the device interface element to make an electrical connection.
    Type: Application
    Filed: October 18, 2006
    Publication date: May 3, 2007
    Applicant: GSI Group Corporation
    Inventors: Jonathan Ehrmann, Patrick Duffy, Markus Weber, Gregg Metzger, Joseph Lento, Pierre-Yves Mabboux, Jens Zink, Yun Chu
  • Patent number: 7212325
    Abstract: A mirror mounting unit is disclosed for use in a limited rotation motor system. The mirror mounting unit includes a mirror, and a tapered base for coupling the mirror mounting unit to an output shaft of a limited rotation motor. In various embodiments, the tapered base may be male or female, the mirror may be formed integral with the tapered base, and the taper may be linear or non-linear.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: May 1, 2007
    Assignee: GSI Group Corporation
    Inventor: Kristopher Pruyn
  • Publication number: 20070089500
    Abstract: A method of analyzing a limited rotation motor system is disclosed. The method includes the step of providing a motor control frequency domain signal that is representative of a frequency domain representation of the motor control signal responsive to a first digital signal that is representative of a motor control signal. The method also includes the step of providing a position detection frequency domain signal that is representative of a frequency domain representation of the position detection signal responsive to a second digital signal that is representative of a position detection signal.
    Type: Application
    Filed: November 30, 2006
    Publication date: April 26, 2007
    Applicant: GSI GROUP CORPORATION
    Inventor: Yuhong Huang
  • Patent number: 7199882
    Abstract: A system including confocal and triangulation-based scanners or subsystems provides data which is both acquired and processed under the control of a control algorithm to obtain information such as dimensional information about microscopic targets which may be “non-cooperative.” The “non-cooperative” targets are illuminated with a scanning beam of electromagnetic radiation such as laser light incident from a first direction. A confocal detector of the electromagnetic radiation is placed at a first location for receiving reflected radiation which is substantially optically collinear with the incident beam of electromagnetic radiation. The system includes a spatial filter for attenuating background energy. The triangulation-based subsystem also includes a detector of electromagnetic radiation which is placed at a second location which is non-collinear with respect to the incident beam. This detector has a position sensitive axis. Digital data is derived from signals produced by the detectors.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: April 3, 2007
    Assignee: GSI Group Corporation
    Inventors: Donald J. Svetkoff, Donald B. T. Kilgus, Warren Lin, Jonathan S. Ehrmann
  • Patent number: 7200464
    Abstract: An improved servo system for galvanometers, scanners and similar devices which uses digital processing to increase the dynamic range and provide greater effective resolution. The system provides digital control of a reference point that directly influences the excitation, which in turn directly influences the gain of the circuit. A high and low resolution switching path is provided to optimize dynamic range. Wide angle torque compensation improves uniformity of response at large angular deflections from zero. Improved thermal protection allows safe operation near system thermal limits. A graphical user interface allows adjustments and changes response on the fly for tuning due to input conditions or user control.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: April 3, 2007
    Assignee: GSI Group Corporation
    Inventors: Michael B Nussbaum, Michael R Shannon, Fredrick A Stewart
  • Patent number: 7193204
    Abstract: An optical encoder includes a sensor head, an encoder scale, and an optical wavefront dividing element. The sensor head includes a substrate, a light source, a first optical detector, and a second optical detector. The light source, the first optical detector, and the second optical detector are disposed on the substrate. The scale includes a first track and a second track. The optical wavefront dividing element is disposed between the sensor head and the scale. A light beam emitted by the light source is divided into a first beam and a second beam by the wavefront dividing element. The first beam is incident on the first track and the second beam is incident on the second track. Light from the first beam diffracted by the first track is incident on the first optical detector. Light from the second beam diffracted by the second track is incident on the second optical detector.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: March 20, 2007
    Assignee: GSI Group Corporation
    Inventor: Donald K. Mitchell
  • Patent number: 7193205
    Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules.
    Type: Grant
    Filed: April 23, 2006
    Date of Patent: March 20, 2007
    Assignee: GSI Group Corporation
    Inventors: Paul Remillard, Stuart Schechter, Douglas A. Klingbeil
  • Patent number: 7192846
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: March 20, 2007
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Roger D. Dowd, Jonathan S. Ehrmann, Joseph J. Griffiths, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7190144
    Abstract: An adjustment system is disclosed for adjusting a proportional, integral, derivative controller in a limited rotation motor system. The adjustment system includes a first transform unit, a second transform unit, a model identification unit, and a PID adjustment unit. The first transform unit is for receiving a first digital signal that is representative of a motor control signal, and is for providing a first frequency domain sequence that is representative of a frequency domain representation of the motor control signal. The second transform unit is for receiving a second digital signal that is representative of a position detection signal, and is for providing a second frequency domain sequence that is representative of a frequency domain representation of the position detection signal. The model identification unit is for identifying a representation of a ratio of the first and second frequency domain sequences.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: March 13, 2007
    Assignee: GSI Group Corporation
    Inventor: Yuhong Huang
  • Patent number: 7183537
    Abstract: A rotary position sensor employs an offset beam forming optical element such as a tilted mirror or a diffraction grating. The axis of the light beam from a source can be parallel to the rotational axis or tilted at a predetermined angle. One or multiple spots of light from reflected/diffracted beam(s) are located on a generally elliptical path on an array of detectors. A detector that is photosensitive only along the elliptical path may be employed, the detector being divided into multiple regions to enable a processor to identify the azimuthal angle of the spot. When a diffraction grating is employed, return beams corresponding to positive first and negative first diffracted orders are generated, and these are displaced substantially symmetrically with respect to the axis of the source. The use of multiple beams can reduce sensitivity to mis-alignment errors.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: February 27, 2007
    Assignee: GSI Group Corporation
    Inventor: William G. Thorburn
  • Patent number: 7176407
    Abstract: A high-speed method and system for precisely positioning a waist of a material-processing laser beam to dynamically compensate for local variations in height of microstructures located on a plurality of objects spaced apart within a laser-processing site are provided. In the preferred embodiment, the microstructures are a plurality of conductive lines formed on a plurality of memory dice of a semiconductor wafer. The system includes a focusing lens subsystem for focusing a laser beam along an optical axis substantially orthogonal to a plane, an x-y stage for moving the wafer in the plane, and a first air bearing sled for moving the focusing lens subsystem along the optical axis.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: February 13, 2007
    Assignee: GSI Group Corporation
    Inventors: Bradley L. Hunter, Steven P. Cahill, Jonathan S. Ehrmann, Michael Plotkin
  • Patent number: 7170251
    Abstract: A diagnostic system is disclosed for analyzing a limited rotation motor system. The diagnostic system includes a first transform unit, a second transform unit, a closed loop frequency response unit, and a diagnostic system. The first transform unit is for receiving a first digital signal that is representative of a motor control signal, and is for providing a motor control frequency domain signal that is representative of a frequency domain representation of the motor control signal. The second transform unit is for receiving a second digital signal that is representative of a position detection signal, and is for providing a position detection frequency domain signal that is representative of a frequency domain representation of the position detection signal. The closed loop frequency response unit is for identifying a representation of the frequency response of the limited rotation motor responsive to the position detection frequency domain signal and the motor control frequency domain signals.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: January 30, 2007
    Assignee: GSI Group Corporation
    Inventor: Yuhong Huang
  • Publication number: 20070019903
    Abstract: A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.
    Type: Application
    Filed: September 26, 2006
    Publication date: January 25, 2007
    Applicant: GSI GROUP CORPORATION
    Inventors: Christopher Wimperis, William McCreath, William Eccleshall, Mandeep Singh, Christopher Becker, Richard Neily, Kurt Pelsue
  • Patent number: 7148447
    Abstract: A precision, laser-based method and system for high-speed, sequential processing of material of targets within a field are disclosed that control the irradiation distribution pattern of imaged spots. For each spot, a laser beam is incident on a first anamorphic optical device and a second anamorphic optical device so that the beam is controllably modified into an elliptical irradiance pattern. The modified beam is propagated through a scanning optical system with an objective lens to image a controlled elliptical spot on the target. In one embodiment, the relative orientations of the devices along an optical axis are controlled to modify the beam irradiance pattern to obtain an elliptical shape while the absolute orientation of the devices controls the orientation of the elliptical spot.
    Type: Grant
    Filed: January 16, 2006
    Date of Patent: December 12, 2006
    Assignee: GSI Group Corporation
    Inventors: Jonathan S. Ehrmann, James J. Cordingley, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7146064
    Abstract: A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: December 5, 2006
    Assignee: GSI Group Corporation
    Inventors: Christopher Wimperis, William McCreath, William Eccleshall, Mandeep Singh, Christopher D. Becker, Richard A. Neily, Kurt Pelsue
  • Patent number: 7136547
    Abstract: The invention provides a method and apparatus for directing a radiation beam (504, 606) in a desired direction. There is provided a movable member (10) supported for movement by a fixed member (40) and the movable member has an optical element, e.g a flat mirror (30) fixedly attached thereto. In one embodiment the mirror scans a radiation beam incident thereon in one plane. In a second embodiment, the radiation beam is scanned in two mutually perpendicular planes. A magnetic element (50) having a north and a south magnetic pole is fixedly attached to the movable member (10). A magnetically permeable stator element (70) that is stationary with respect to the movable member (10) and the magnetic element (50) is placed in the field of the magnetic element such that the stator element and said magnetic element mutually generate a magnetic traction force between them.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: November 14, 2006
    Assignee: GSI Group Corporation
    Inventors: David C. Brown, Felix Stukalin, Michael B. Nussbaum, Evghenii Onoicenco, Edward L. Kelley