Patents Assigned to GSI Group Corporation
-
Patent number: 7212325Abstract: A mirror mounting unit is disclosed for use in a limited rotation motor system. The mirror mounting unit includes a mirror, and a tapered base for coupling the mirror mounting unit to an output shaft of a limited rotation motor. In various embodiments, the tapered base may be male or female, the mirror may be formed integral with the tapered base, and the taper may be linear or non-linear.Type: GrantFiled: November 23, 2004Date of Patent: May 1, 2007Assignee: GSI Group CorporationInventor: Kristopher Pruyn
-
Patent number: 7199882Abstract: A system including confocal and triangulation-based scanners or subsystems provides data which is both acquired and processed under the control of a control algorithm to obtain information such as dimensional information about microscopic targets which may be “non-cooperative.” The “non-cooperative” targets are illuminated with a scanning beam of electromagnetic radiation such as laser light incident from a first direction. A confocal detector of the electromagnetic radiation is placed at a first location for receiving reflected radiation which is substantially optically collinear with the incident beam of electromagnetic radiation. The system includes a spatial filter for attenuating background energy. The triangulation-based subsystem also includes a detector of electromagnetic radiation which is placed at a second location which is non-collinear with respect to the incident beam. This detector has a position sensitive axis. Digital data is derived from signals produced by the detectors.Type: GrantFiled: April 8, 2005Date of Patent: April 3, 2007Assignee: GSI Group CorporationInventors: Donald J. Svetkoff, Donald B. T. Kilgus, Warren Lin, Jonathan S. Ehrmann
-
Patent number: 7200464Abstract: An improved servo system for galvanometers, scanners and similar devices which uses digital processing to increase the dynamic range and provide greater effective resolution. The system provides digital control of a reference point that directly influences the excitation, which in turn directly influences the gain of the circuit. A high and low resolution switching path is provided to optimize dynamic range. Wide angle torque compensation improves uniformity of response at large angular deflections from zero. Improved thermal protection allows safe operation near system thermal limits. A graphical user interface allows adjustments and changes response on the fly for tuning due to input conditions or user control.Type: GrantFiled: September 21, 2001Date of Patent: April 3, 2007Assignee: GSI Group CorporationInventors: Michael B Nussbaum, Michael R Shannon, Fredrick A Stewart
-
Patent number: 7193204Abstract: An optical encoder includes a sensor head, an encoder scale, and an optical wavefront dividing element. The sensor head includes a substrate, a light source, a first optical detector, and a second optical detector. The light source, the first optical detector, and the second optical detector are disposed on the substrate. The scale includes a first track and a second track. The optical wavefront dividing element is disposed between the sensor head and the scale. A light beam emitted by the light source is divided into a first beam and a second beam by the wavefront dividing element. The first beam is incident on the first track and the second beam is incident on the second track. Light from the first beam diffracted by the first track is incident on the first optical detector. Light from the second beam diffracted by the second track is incident on the second optical detector.Type: GrantFiled: July 7, 2003Date of Patent: March 20, 2007Assignee: GSI Group CorporationInventor: Donald K. Mitchell
-
Patent number: 7193205Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules.Type: GrantFiled: April 23, 2006Date of Patent: March 20, 2007Assignee: GSI Group CorporationInventors: Paul Remillard, Stuart Schechter, Douglas A. Klingbeil
-
Patent number: 7192846Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.Type: GrantFiled: May 9, 2005Date of Patent: March 20, 2007Assignee: GSI Group CorporationInventors: James J. Cordingley, Roger D. Dowd, Jonathan S. Ehrmann, Joseph J. Griffiths, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
-
Patent number: 7190144Abstract: An adjustment system is disclosed for adjusting a proportional, integral, derivative controller in a limited rotation motor system. The adjustment system includes a first transform unit, a second transform unit, a model identification unit, and a PID adjustment unit. The first transform unit is for receiving a first digital signal that is representative of a motor control signal, and is for providing a first frequency domain sequence that is representative of a frequency domain representation of the motor control signal. The second transform unit is for receiving a second digital signal that is representative of a position detection signal, and is for providing a second frequency domain sequence that is representative of a frequency domain representation of the position detection signal. The model identification unit is for identifying a representation of a ratio of the first and second frequency domain sequences.Type: GrantFiled: January 21, 2005Date of Patent: March 13, 2007Assignee: GSI Group CorporationInventor: Yuhong Huang
-
Patent number: 7183537Abstract: A rotary position sensor employs an offset beam forming optical element such as a tilted mirror or a diffraction grating. The axis of the light beam from a source can be parallel to the rotational axis or tilted at a predetermined angle. One or multiple spots of light from reflected/diffracted beam(s) are located on a generally elliptical path on an array of detectors. A detector that is photosensitive only along the elliptical path may be employed, the detector being divided into multiple regions to enable a processor to identify the azimuthal angle of the spot. When a diffraction grating is employed, return beams corresponding to positive first and negative first diffracted orders are generated, and these are displaced substantially symmetrically with respect to the axis of the source. The use of multiple beams can reduce sensitivity to mis-alignment errors.Type: GrantFiled: December 16, 2003Date of Patent: February 27, 2007Assignee: GSI Group CorporationInventor: William G. Thorburn
-
Patent number: 7176407Abstract: A high-speed method and system for precisely positioning a waist of a material-processing laser beam to dynamically compensate for local variations in height of microstructures located on a plurality of objects spaced apart within a laser-processing site are provided. In the preferred embodiment, the microstructures are a plurality of conductive lines formed on a plurality of memory dice of a semiconductor wafer. The system includes a focusing lens subsystem for focusing a laser beam along an optical axis substantially orthogonal to a plane, an x-y stage for moving the wafer in the plane, and a first air bearing sled for moving the focusing lens subsystem along the optical axis.Type: GrantFiled: April 26, 2005Date of Patent: February 13, 2007Assignee: GSI Group CorporationInventors: Bradley L. Hunter, Steven P. Cahill, Jonathan S. Ehrmann, Michael Plotkin
-
Patent number: 7170251Abstract: A diagnostic system is disclosed for analyzing a limited rotation motor system. The diagnostic system includes a first transform unit, a second transform unit, a closed loop frequency response unit, and a diagnostic system. The first transform unit is for receiving a first digital signal that is representative of a motor control signal, and is for providing a motor control frequency domain signal that is representative of a frequency domain representation of the motor control signal. The second transform unit is for receiving a second digital signal that is representative of a position detection signal, and is for providing a position detection frequency domain signal that is representative of a frequency domain representation of the position detection signal. The closed loop frequency response unit is for identifying a representation of the frequency response of the limited rotation motor responsive to the position detection frequency domain signal and the motor control frequency domain signals.Type: GrantFiled: January 21, 2005Date of Patent: January 30, 2007Assignee: GSI Group CorporationInventor: Yuhong Huang
-
Patent number: 7148447Abstract: A precision, laser-based method and system for high-speed, sequential processing of material of targets within a field are disclosed that control the irradiation distribution pattern of imaged spots. For each spot, a laser beam is incident on a first anamorphic optical device and a second anamorphic optical device so that the beam is controllably modified into an elliptical irradiance pattern. The modified beam is propagated through a scanning optical system with an objective lens to image a controlled elliptical spot on the target. In one embodiment, the relative orientations of the devices along an optical axis are controlled to modify the beam irradiance pattern to obtain an elliptical shape while the absolute orientation of the devices controls the orientation of the elliptical spot.Type: GrantFiled: January 16, 2006Date of Patent: December 12, 2006Assignee: GSI Group CorporationInventors: Jonathan S. Ehrmann, James J. Cordingley, Donald V. Smart, Donald J. Svetkoff
-
Patent number: 7146064Abstract: A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.Type: GrantFiled: April 2, 2002Date of Patent: December 5, 2006Assignee: GSI Group CorporationInventors: Christopher Wimperis, William McCreath, William Eccleshall, Mandeep Singh, Christopher D. Becker, Richard A. Neily, Kurt Pelsue
-
Patent number: 7136547Abstract: The invention provides a method and apparatus for directing a radiation beam (504, 606) in a desired direction. There is provided a movable member (10) supported for movement by a fixed member (40) and the movable member has an optical element, e.g a flat mirror (30) fixedly attached thereto. In one embodiment the mirror scans a radiation beam incident thereon in one plane. In a second embodiment, the radiation beam is scanned in two mutually perpendicular planes. A magnetic element (50) having a north and a south magnetic pole is fixedly attached to the movable member (10). A magnetically permeable stator element (70) that is stationary with respect to the movable member (10) and the magnetic element (50) is placed in the field of the magnetic element such that the stator element and said magnetic element mutually generate a magnetic traction force between them.Type: GrantFiled: February 13, 2002Date of Patent: November 14, 2006Assignee: GSI Group CorporationInventors: David C. Brown, Felix Stukalin, Michael B. Nussbaum, Evghenii Onoicenco, Edward L. Kelley
-
Patent number: 7135987Abstract: A system is disclosed for recording continuous streaming data. The system includes a data collection unit, a wireless data transmission unit, a wireless data reception unit and a recorder unit. The data collection unit is for continuously collecting data at a data collection frequency, ƒC and providing collected data. The wireless data transmission unit is for continuously transmitting the collected data at a data transmission frequency, ƒT where ƒC is greater than ƒT. The wireless data reception unit is for continuously receiving collected data at a data reception frequency, ƒR where ƒR is equal to ƒT. The recorder unit is for providing a recorder output of the collected data at a frequency of ƒO where ƒO is equal to ƒT.Type: GrantFiled: May 30, 2003Date of Patent: November 14, 2006Assignee: GSI Group CorporationInventors: Robert LaMotte, William Perry, William Saltzstein
-
Patent number: 7129601Abstract: A method and apparatus for supporting a movable member (10) with respect to a fixed member (40) is provided. The movable member (10) includes a magnetically permeable portion (81) contained therein and magnetic element (50) fixedly attached thereto and movable therewith. The movable member (10) is supported for rotation with respect to the fixed member (40) by an outer bearing surface (11) of the movable member and an inner bearing surface (20) of the fixed member (40). The fixed member (40) provides access to the movable member (10) from two sides thereof. A magnetically permeable stator element (70) is fixedly attached to the fixed member (40) and positioned within a magnetic flux field of the magnetic element (50) such that an air gap (73) is formed between the magnetic element (50) and the stator element (70).Type: GrantFiled: February 13, 2002Date of Patent: October 31, 2006Assignee: GSI Group CorporationInventors: David C. Brown, Felix Stukalin, Michael B. Nussbaum, Kurt Pelsue
-
Patent number: 7126109Abstract: An encoder calculates position error values and applies compensation values to encoder position measurements in-situ. The encoder includes a scale and a multi-section detector for detecting a spatially periodic pattern, such as an optical interference pattern, produced by the scale. The detector includes spatially separated first and second sections. A signal processor estimates respective phase values from detector sections and calculates a phase difference reflecting a spatial position error in the scale. A compensation value is calculated from the phase difference and included in the estimate of the scale position to compensate for this spatial position error. The compensation values may be calculated and used on the fly, or calculated and saved during an in-situ calibration operation and then utilized during normal operation to compensate uncorrected measurements.Type: GrantFiled: June 14, 2004Date of Patent: October 24, 2006Assignee: GSI Group CorporationInventors: Andrew Goldman, William G. Thorburn
-
Patent number: 7119351Abstract: A system and method for inspecting machine readable marks on one side of a wafer without requiring transmission of radiant energy from another side of the wafer and through the wafer. The wafer has articles which may include die, chip scale packages, circuit patterns and the like. The marking occurs in a wafer marking system and within a designated region relative to an article position. The articles have a pattern on a first side. The method includes the steps of imaging a first side of the wafer, imaging a second side of the wafer, establishing correspondence between a portion of first side image and a portion of a second side image, and superimposing image data from the first and second sides to determine at least the position of a mark relative to an article.Type: GrantFiled: May 15, 2003Date of Patent: October 10, 2006Assignee: GSI Group CorporationInventor: Michael Woelki
-
Publication number: 20060186360Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules.Type: ApplicationFiled: April 23, 2006Publication date: August 24, 2006Applicant: GSI Group CorporationInventors: Paul Remillard, Stuart Schechter, Douglas Klingbeil
-
Patent number: 7075057Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules. The apparatus also includes a circuit to apply the Gain, Offset, and Phase calibration coefficients to the measured quadrature signals xi and yi according to predetermined formulae using scaling coefficients, offset coefficients and a phase coefficient.Type: GrantFiled: April 26, 2005Date of Patent: July 11, 2006Assignee: GSI Group CorporationInventors: Paul Remillard, Stuart Schechter, Douglas A. Klingbeil
-
Patent number: 7067797Abstract: An optical encoder includes an optical source, a scale, an optical detector and signal processing circuitry. The scale is operative with a light beam from the source to generate an optical pattern such as a line pattern extending in an X direction of relative movement between the scale and the source. The detector generates analog detector output signals indicative of the location of the optical pattern on the detector in an alignment direction orthogonal to the X direction. The detector may include two bi-cell elements spaced apart in the X direction, each element including two cells of complementary shape, such as a sharks-tooth. The signal processing circuitry operates in response to the detector output signals to generate an alignment value indicating a polarity and a magnitude of misalignment between the detector and the scale in the alignment direction.Type: GrantFiled: September 15, 2004Date of Patent: June 27, 2006Assignee: GSI Group CorporationInventors: Donald K. Mitchell, William G. Thorburn, Andrew Goldman, Keith M. Hinrichs