Patents Assigned to GSI Group Corporation
  • Patent number: 7135987
    Abstract: A system is disclosed for recording continuous streaming data. The system includes a data collection unit, a wireless data transmission unit, a wireless data reception unit and a recorder unit. The data collection unit is for continuously collecting data at a data collection frequency, ƒC and providing collected data. The wireless data transmission unit is for continuously transmitting the collected data at a data transmission frequency, ƒT where ƒC is greater than ƒT. The wireless data reception unit is for continuously receiving collected data at a data reception frequency, ƒR where ƒR is equal to ƒT. The recorder unit is for providing a recorder output of the collected data at a frequency of ƒO where ƒO is equal to ƒT.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: November 14, 2006
    Assignee: GSI Group Corporation
    Inventors: Robert LaMotte, William Perry, William Saltzstein
  • Patent number: 7129601
    Abstract: A method and apparatus for supporting a movable member (10) with respect to a fixed member (40) is provided. The movable member (10) includes a magnetically permeable portion (81) contained therein and magnetic element (50) fixedly attached thereto and movable therewith. The movable member (10) is supported for rotation with respect to the fixed member (40) by an outer bearing surface (11) of the movable member and an inner bearing surface (20) of the fixed member (40). The fixed member (40) provides access to the movable member (10) from two sides thereof. A magnetically permeable stator element (70) is fixedly attached to the fixed member (40) and positioned within a magnetic flux field of the magnetic element (50) such that an air gap (73) is formed between the magnetic element (50) and the stator element (70).
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: October 31, 2006
    Assignee: GSI Group Corporation
    Inventors: David C. Brown, Felix Stukalin, Michael B. Nussbaum, Kurt Pelsue
  • Patent number: 7126109
    Abstract: An encoder calculates position error values and applies compensation values to encoder position measurements in-situ. The encoder includes a scale and a multi-section detector for detecting a spatially periodic pattern, such as an optical interference pattern, produced by the scale. The detector includes spatially separated first and second sections. A signal processor estimates respective phase values from detector sections and calculates a phase difference reflecting a spatial position error in the scale. A compensation value is calculated from the phase difference and included in the estimate of the scale position to compensate for this spatial position error. The compensation values may be calculated and used on the fly, or calculated and saved during an in-situ calibration operation and then utilized during normal operation to compensate uncorrected measurements.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: October 24, 2006
    Assignee: GSI Group Corporation
    Inventors: Andrew Goldman, William G. Thorburn
  • Patent number: 7119351
    Abstract: A system and method for inspecting machine readable marks on one side of a wafer without requiring transmission of radiant energy from another side of the wafer and through the wafer. The wafer has articles which may include die, chip scale packages, circuit patterns and the like. The marking occurs in a wafer marking system and within a designated region relative to an article position. The articles have a pattern on a first side. The method includes the steps of imaging a first side of the wafer, imaging a second side of the wafer, establishing correspondence between a portion of first side image and a portion of a second side image, and superimposing image data from the first and second sides to determine at least the position of a mark relative to an article.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: October 10, 2006
    Assignee: GSI Group Corporation
    Inventor: Michael Woelki
  • Publication number: 20060186360
    Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules.
    Type: Application
    Filed: April 23, 2006
    Publication date: August 24, 2006
    Applicant: GSI Group Corporation
    Inventors: Paul Remillard, Stuart Schechter, Douglas Klingbeil
  • Patent number: 7075057
    Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules. The apparatus also includes a circuit to apply the Gain, Offset, and Phase calibration coefficients to the measured quadrature signals xi and yi according to predetermined formulae using scaling coefficients, offset coefficients and a phase coefficient.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 11, 2006
    Assignee: GSI Group Corporation
    Inventors: Paul Remillard, Stuart Schechter, Douglas A. Klingbeil
  • Patent number: 7067797
    Abstract: An optical encoder includes an optical source, a scale, an optical detector and signal processing circuitry. The scale is operative with a light beam from the source to generate an optical pattern such as a line pattern extending in an X direction of relative movement between the scale and the source. The detector generates analog detector output signals indicative of the location of the optical pattern on the detector in an alignment direction orthogonal to the X direction. The detector may include two bi-cell elements spaced apart in the X direction, each element including two cells of complementary shape, such as a sharks-tooth. The signal processing circuitry operates in response to the detector output signals to generate an alignment value indicating a polarity and a magnitude of misalignment between the detector and the scale in the alignment direction.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: June 27, 2006
    Assignee: GSI Group Corporation
    Inventors: Donald K. Mitchell, William G. Thorburn, Andrew Goldman, Keith M. Hinrichs
  • Patent number: 7067763
    Abstract: An improved method of laser marking semiconductor wafers is provided wherein undesirable subsurface damage to a silicon semiconductor wafer is avoided while providing a relative improvement in marking speed for a predetermined spot diameter. A laser pulse of a laser beam has a predetermined wavelength, pulse width, repetition rate, and energy. The method further includes irradiating a semiconductor wafer with the pulsed laser beam over a spot diameter to produce a machine readable mark on the semiconductor wafer. The mark has a mark depth. The pulse width is less than about 50 ns, and the step of irradiating irradiates over the spot diameter to produce a mark having a mark depth substantially less than about 10 microns.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: June 27, 2006
    Assignee: GSI Group Corporation
    Inventor: Rainer Schramm
  • Patent number: 7015418
    Abstract: A method of calibrating a laser marking system includes calibrating a laser marking system in three dimensions. The step of calibrating includes storing data corresponding to a plurality of heights. A position measurement of a workpiece is obtained to be marked. Stored calibration data is associated with the position measurement. A method and system for calibrating a laser processing or marking system is provided. The method includes: calibrating a laser marker over a marking field; obtaining a position measurement of a workpiece to be marked; associating stored calibration data with the position measurement; relatively positioning a marking beam and the workpiece based on at least the associated calibration data; and calibrating a laser marking system in at least three degrees of freedom. The step of calibrating includes storing data corresponding to a plurality of positions and controllably and relatively positioning a marking beam based on the stored data corresponding to the plurality of positions.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: March 21, 2006
    Assignee: GSI Group Corporation
    Inventors: Steven P. Cahill, Jonathan S. Ehrmann, You C. Li, Rainer Schramm, Kurt Pelsue
  • Patent number: 6989508
    Abstract: A precision, laser-based method and system for high-speed, sequential processing of material of targets within a field are disclosed that control the irradiation distribution pattern of imaged spots. For each spot, a laser beam is incident on a first anamorphic optical device and a second anamorphic optical device so that the beam is controllably modified into an elliptical irradiance pattern. The modified beam is propagated through a scanning optical system with an objective lens to image a controlled elliptical spot on the target. In one embodiment, the relative orientations of the devices along an optical axis are controlled to modify the beam irradiance pattern to obtain an elliptical shape while the absolute orientation of the devices controls the orientation of the elliptical spot.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: January 24, 2006
    Assignee: GSI Group Corporation
    Inventors: Jonathan S. Ehrmann, James J. Cordingley, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 6987786
    Abstract: A laser polarization control apparatus includes a polarization modifying device, such as a liquid crystal variable retarder, and a controller. The polarization modifying device receives a laser beam and modifies the polarization of the laser beam. The controller, which is connected to the polarization modifying device, adjusts an input to the polarization modifying device in order to control modification of the polarization of the laser beam based on alignment of a structure to be processed by the laser beam. For example, the polarization of the laser beam may be rotated to correspond with the alignment of a link in a semiconductor device to be cut by the laser beam. The polarization modifying device is configured for incorporation into a laser processing system that produces the laser beam received by the polarization modifying device and that focuses the laser beam modified by the polarization modifying device onto a workpiece that includes the structure to be processed by the laser beam.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: January 17, 2006
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Donald V. Smart, Michael Plotkin, Joohan Lee, William Lauer, Jonathan S. Ehrmann
  • Patent number: 6982504
    Abstract: A limited rotation torque motor is disclosed including a rotor with at least one pair of magnetic poles and a stator with at least one pair of stator coils. Each stator coil includes a plurality of layers of interconnected flexible circuit composites. Each flexible circuit composite includes a dielectric material and a patterned conductive material on one side of said dielectric material.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: January 3, 2006
    Assignee: GSI Group Corporation
    Inventor: David C. Brown
  • Patent number: 6949844
    Abstract: A high-speed precision positioning apparatus has a stage supported by a platen. The stage is driven by a plurality of drive motors that are co-planar with the stage and arranged symmetrically around the stage. The drive motors apply drive forces directly to the stage without any mechanical contact to the stage. The drive forces impart planar motion to the stage in at least three degrees of freedom of motion. In the remaining three degrees of freedom the motion is constrained by a plurality of fluid bearings that operate between the stage and the platen. The drive motors are configured as magnets, attached to the stage, moving in a gap formed in-between top and bottom stationary coils. Integral force cancellation is implemented by a force cancellation system that applies cancellation forces to the stage. The cancellation forces, which are co-planar with a center of gravity of the stage and any components that move with the stage, cancel forces generated by planar motion of the stage.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: September 27, 2005
    Assignee: GSI Group Corporation
    Inventors: Steven P. Cahill, Bradley L. Hunter