Abstract: A magnetocardiography (MCG) system includes a passively shielded enclosure having walls defining the passively shielded enclosure, each of the walls including passive magnetic shielding material to reduce an ambient background magnetic field within the passively shielded enclosure; an MCG measurement device including optically pumped magnetometers (OPMs); and active shield coils within the passively shielded enclosure and stationary relative to the passively shielded enclosure and the MCG measurement device, wherein the active shield coils are configured to further reduce the ambient background magnetic field within a user area of the passively shielded enclosure.
Abstract: An optical measurement system includes a wearable module having at least one time-resolved single photon photodetector configured to detect photons from at least one light pulse after the at least one light pulse is scattered by a target within a body of a user; at least one light guide configured to receive the photons and guide the photons to the at least one photodetector; and a housing that houses both the at least one photodetector and at least a portion of the at least one light guide. The optical measurement system further includes a signal processing circuit configured to determine a temporal distribution of the photons detected by the at least one photodetector and generate a histogram based on the temporal distribution of the photons.
Type:
Grant
Filed:
February 16, 2021
Date of Patent:
October 3, 2023
Assignee:
HI LLC
Inventors:
Scott Jeremy Seidman, Ryan Field, Isai Olvera, Jennifer Rines
Abstract: An optical measurement system comprising an optical source configured for delivering sample light in an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, an optical detector configured for detecting the physiological-encoded signal light, and a processor configured for acquiring a TOF profile derived from the physiological-encoded signal light, the initial TOF profile having an initial contrast-to-noise ratio (CNR) between a plurality of states of a physiological activity in the anatomical structure. The processor is further configured for applying one or more weighting functions to the initial TOF profile to generate a weighted TOF profile having a subsequent CNR greater than the initial CNR between the plurality of states of the physiological activity.
Type:
Application
Filed:
May 18, 2023
Publication date:
September 28, 2023
Applicant:
HI LLC
Inventors:
Jamu Alford, Adam Marblestone, Ivo Vellekoop, Daniel Sobek, Michael Henninger, Brian Robinson, Yuecheng Shen, Roarke Horstmeyer
Abstract: A magnetic field recording system includes a headgear to be placed on a user; optically pumped magnetometers (OPMs) disposed in or on the headgear to detect magnetic fields; at least two sensing modalities selected from the following: i) a magnetic sensing modality, ii) an optical sensing modality, or iii) an inertial sensing modality; and a tracking unit configured to receive, from each of the at least two sensing modalities, a corresponding magnetic data stream, optical data stream, or inertial data stream and to track a position or orientation of the headgear or user; and a system controller configured to control operation of the OPMs and to receive, from the tracking unit, the position or orientation of the headgear or user.
Abstract: A method of operating an optically pumped magnetometer (OPM) includes directing a light beam through a vapor cell of the OPM including a vapor of atoms; applying RF excitation to cause spins of the atoms to precess; measuring a frequency of the precession; for each of a plurality of different axes relative to the vapor cell, directing a light beam through the vapor cell, applying a magnetic field through the vapor cell along the axis, applying RF excitation to cause spins of the atoms to precess, and measuring a frequency of the precession in the applied magnetic field; determining magnitude and components of an ambient background magnetic field along the axes using the measured frequencies; and applying a magnetic field based on the components around the vapor cell to counteract the ambient background magnetic field to facilitate operation of the OPM in a spin exchange relaxation free (SERF) mode.
Abstract: An exemplary controller may include a single clock source configured to generate a single clock signal used to drive one or more components within a plurality of magnetometers and a plurality of differential signal measurement circuits configured to measure current output by a photodetector of each of the plurality of magnetometers.
Type:
Grant
Filed:
August 26, 2021
Date of Patent:
August 22, 2023
Assignee:
HI LLC
Inventors:
Stephen Garber, Jerry Leung, Ethan Pratt, Hooman Mohseni, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Scott Jeremy Seidman, Benjamin Siepser
Abstract: An illustrative system may include a component configured to be worn on a body of a user, the component comprising a time-to-digital converter (TDC) configured to: receive, during a predetermined event detection time window that commences in response to an application of a light pulse to a target within the body, a signal triggered by an event in which a photodetector detects a photon of the light pulse after the light pulse reflects from the target; and measure, based on the receiving the signal, a time interval between when the event occurred and an end of the predetermined event detection time window. The system may further include a processor configured to determine, based on the time interval and the predetermined event detection time window, an arrival time of the photon at the photodetector.
Type:
Grant
Filed:
April 21, 2022
Date of Patent:
August 22, 2023
Assignee:
HI LLC
Inventors:
Sebastian Sorgenfrei, Jacob Dahle, Ryan Field, Bruno Do Valle, Rong Jin
Abstract: A physiological activity detection system comprises a signal acquisition module configured for non-invasively acquiring a signal from an anatomical structure of a user, the acquired signal having a physiological-encoded component and a periodic artifact component that dominates the physiological-encoded component. The physiological activity detection system further comprises a phase-locked loop (PLL) component configured for estimating a phase of the periodic artifact component of the acquired signal, and generating a periodic reference signal having a phase representative of the estimated phase of the periodic artifact component of the acquired signal.
Abstract: An exemplary wearable sensor unit includes 1) a magnetometer comprising a vapor cell comprising an input window and containing an alkali metal, and a light source configured to output light that passes through the input window and into the vapor cell along a transit path, and 2) a temperature control circuit external to the vapor cell and configured to create a temperature gradient within the vapor cell, the temperature gradient configured to concentrate the alkali metal within the vapor cell away from the transit path of the light.
Type:
Grant
Filed:
April 30, 2020
Date of Patent:
July 11, 2023
Assignee:
HI LLC
Inventors:
Stephen Garber, Ethan Pratt, Jeffery Kang Gormley, Scott Michael Homan, Scott Jeremy Seidman, Dakota Blue Decker, Jamu Alford, Michael Henninger, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Benjamin Siepser
Abstract: A non-invasive system and method are provided. Brain activity of a user is detected using a non-invasive brain interface when the user is exposed to an external stimulus. The user is determined to be negatively primed by the external stimulus based on the detected brain activity. An alert that the user is being negatively primed by the external stimulus is automatically provided. A tagged training session may be automatically provided to the user in response determining that the user has a negative mental state, thereby promoting a positive mental state of the user. A training session list containing the tagged training session may be automatically modified based on the determined mental state of the user.
Abstract: An illustrative optical measurement system may include a wearable assembly comprising a plurality of modules each configured to fit within a different slot of the wearable assembly. The plurality of modules may include a module that comprises first and second light sources each configured to emit light directed at a target and a set of detectors configured to detect arrival times for photons of the light emitted by the first and second light sources. A ratio of a total number of the detectors to a total number of the light sources is at least two to one.
Type:
Grant
Filed:
October 22, 2021
Date of Patent:
May 23, 2023
Assignee:
HI LLC
Inventors:
Ryan Field, Husam Katnani, Katherine Perdue
Abstract: A system comprises memory configured for storing an emotional response engine configured for predicting an emotional state set in response to an input of a real-life scenario that may occur in the context of a range of use of an AI control system. The system further comprises user interfaces (UIs) configured for presenting the real-life scenario to human subjects. The system further comprises at least one non-invasive brain interface assembly configured for detecting brain activity of the human subjects in response to presenting the real-life scenario to each of the human subjects. The system further comprises a processor configured for determining a plurality of emotional state sets respectively for the human subjects based on the detected brain activity of the respective human subject, and updating the emotional response engine based on the predicted emotional state set and the determined emotional state sets.
Type:
Application
Filed:
August 11, 2021
Publication date:
May 11, 2023
Applicant:
HI LLC
Inventors:
Jamu Alford, Patrick House, Gabriel Lerner, Ethan Pratt
Abstract: An exemplary system includes a photodetector configured to generate a photodetector output pulse when the photodetector detects a photon from a light pulse having a light pulse time period, a TDC configured to monitor for the occurrence of the photodetector output pulse during a measurement time window that is within and shorter in duration than the light pulse time period, a PLL circuit for the TDC, and a precision timing circuit connected to the PLL circuit and configured to adjust, based on at least one signal generated within the PLL circuit, a temporal position of the measurement time window within the light pulse time period.
Type:
Grant
Filed:
March 16, 2021
Date of Patent:
May 9, 2023
Assignee:
HI LLC
Inventors:
Ryan Field, Jacob Dahle, Rong Jin, Bruno Do Valle, Sebastian Sorgenfrei
Abstract: An optical measurement system includes a wearable device including a support assembly configured to be worn on a body of a user and a wearable assembly supported by the support assembly. The wearable assembly includes a plurality of light sources configured to emit a plurality of light pulses toward a target within the body of the user and a plurality of detectors each configured to receive a set of photons included in a light pulse included in the plurality of light pulses after the set of photons is scattered by the target. A position of the wearable assembly on the support assembly is adjustable.
Type:
Grant
Filed:
February 16, 2021
Date of Patent:
April 18, 2023
Assignee:
HI LLC
Inventors:
Scott Jeremy Seidman, Jennifer Rines, Ryan Field, Isai Olvera, Zachary Phillip Sheldon, Katherine Perdue
Abstract: An illustrative system includes a brain interface system configured to be worn by a user and to output brain activity data representative of brain activity of the user while the user concurrently plays an electronic game and a computing device configured to obtain the brain activity data and modify, based on the brain activity data, an attribute of the electronic game.
Type:
Grant
Filed:
February 10, 2022
Date of Patent:
March 28, 2023
Assignee:
HI LLC
Inventors:
Bryan Johnson, Ryan Field, Katherine Perdue
Abstract: An exemplary system includes a photodetector configured to generate a plurality of photodetector output pulses over time as a plurality of light pulses are applied to and scattered by a target, a TPSF generation circuit configured to generate, based on the photodetector output pulses, a TPSF representative of a light pulse response of the target, and a control circuit configured to direct the TPSF generation circuit to selectively operate in different resolution modes.
Type:
Grant
Filed:
March 16, 2021
Date of Patent:
March 21, 2023
Assignee:
HI LLC
Inventors:
Bruno Do Valle, Ryan Field, Rong Jin, Jacob Dahle
Abstract: A magnetic field measurement system includes a magnetometer having at least one vapor cell, at least one light source to direct at least two light beams through the vapor cell(s), and at least one detector; at least one magnetic field generator to modify an external magnetic field experienced by the vapor cell(s); and at least one processor configured for: applying a first modulation pattern, bmod(t), to the magnetic field generator(s) to modulate a magnetic field at the vapor cell(s), where bmod(t)=[cx cos(?t)+sx sin(?t), cy cos(?t)+sy sin(?t), cz cos(?t)+sz sin(?t)], where cx, sx, cy, sy, cz, and sz are amplitudes and ? is a frequency; directing the light source(s) to direct the light beams through the vapor cell(s); receiving signals from the detector(s); and determining three orthogonal components of the external magnetic field using the received signals. Multi-frequency modulation patterns can alternatively be used.
Type:
Grant
Filed:
January 5, 2022
Date of Patent:
March 14, 2023
Assignee:
HI LLC
Inventors:
Micah Ledbetter, Benjamin Shapiro, Ethan Pratt, Ricardo Jimenez-Martinez, Argyrios Dellis, Kayla Wright-Freeman, Geoffrey Iwata, Michael Romalis
Abstract: An active shield magnetometry system comprises at least one magnetic field actuator configured for generating an actuated magnetic field that at least partially cancels an outside magnetic field, thereby yielding a total residual magnetic field. The active shield magnetometry system further comprises a plurality of magnetometers respectively configured for measuring the total residual magnetic field and outputting a plurality of total residual magnetic field measurements. The active shield magnetometry system further comprises at least one feedback control loop comprising at least one optimal linear controller configured for controlling the actuated magnetic field at least partially based on at least one of the plurality of total residual magnetic field measurements respectively output by at least one of the plurality of magnetometers.
Type:
Grant
Filed:
January 27, 2021
Date of Patent:
March 14, 2023
Assignee:
HI LLC
Inventors:
Benjamin Shapiro, Ricardo Jimenez-Martinez, Julian Kates-Harbeck
Abstract: A mental impairment detection system and non-invasive method of detecting mental impairment of a user are provided. A test (e.g., an inhibitory reflex test or a sustained attention test) is administered to the user, brain activity in a frontal lobe of the user is non-invasively detected while the test is administered to the user, and a level of mental impairment of the user is determined based on the brain activity detected in the frontal lobe of the user.
Type:
Grant
Filed:
January 27, 2022
Date of Patent:
March 14, 2023
Assignee:
HI LLC
Inventors:
Husam Katnani, Daniel Sobek, Antonio H. Lara
Abstract: A system for training a neurome that emulates a brain of a user comprises a non-invasive brain interface assembly configured for detecting neural activity of the user in response to analog instances of a plurality of stimuli peripherally input into the brain of the user from at least one source of content, memory configured for storing a neurome configured for outputting a plurality of determined brain states of an avatar in response to inputs of the digital instances of the plurality of stimuli, and a neurome training processor configured for determining a plurality of brain states of the user based on the detected neural activity of the user, and modifying the neurome based on the plurality of determined brain states of the user and the plurality of determined brain states of the avatar.
Type:
Grant
Filed:
August 20, 2021
Date of Patent:
February 28, 2023
Assignee:
HI LLC
Inventors:
Bryan Johnson, Ethan Pratt, Jamu Alford, Husam Katnani, Julian Kates-Harbeck, Ryan Field, Gabriel Lerner, Antonio H. Lara