Patents Assigned to HI LLC
  • Patent number: 11172869
    Abstract: A non-invasive product customization system and a method of customizing a product formulation is provided. Brain activity of a user is detected in response to an input of a product formulation into a brain of the user via a sensory nervous system of the user. A mental state of the user is detected based on the detected brain activity. The product formulation is modified based on the determined mental state of the user. The modified product formulation may be presented to the user in a manner that modulates the mental state of the user.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: November 16, 2021
    Assignee: HI LLC
    Inventors: Bryan Johnson, Husam Katnani, Daniel Sobek
  • Publication number: 20210341383
    Abstract: Source light having a range of optical wavelengths is generated. The source light is split into sample light and reference light. The sample light is delivered into a sample, such that it is scattered by the sample, resulting in signal light that exits the sample. The signal light and reference light are combined into an interference light pattern having optical modes. Different subsets of the optical modes of the interference light pattern are respectively detected, and high-bandwidth analog signals respectively corresponding to the different subsets of optical modes of the interference light pattern are output. At least one characteristic is extracted from each of the plurality of high-bandwidth analog signals, and low-bandwidth digital signals respectively comprising the extracted characteristics are output. The sample is analyzed based on the low-bandwidth digital signals.
    Type: Application
    Filed: June 16, 2021
    Publication date: November 4, 2021
    Applicant: HI LLC
    Inventors: Hooman Mohseni, Haowen Ruan
  • Publication number: 20210341280
    Abstract: The source light having a range of optical wavelengths is split into sample light and reference light. The sample light is delivered into a sample, such that the sample light is scattered by the sample, resulting in signal light that exits the sample. The signal light and the reference light are combined into an interference light pattern having optical modes having oscillation frequency components respectively corresponding to optical pathlengths extending through the sample. Different sets of the optical modes of the interference light pattern are respectively detected, and high-bandwidth analog signals representative of the optical modes of the interference light pattern are output. The high-bandwidth analog signals are parallel processed, and mid-bandwidth digital signals are output. The mid-bandwidth digital signals are processed over an i number of iterations, and a plurality of low-bandwidth digital signals are output on the ith iteration.
    Type: Application
    Filed: June 8, 2021
    Publication date: November 4, 2021
    Applicant: HI LLC
    Inventors: Hooman Mohseni, Haowen Ruan, Sebastian Sorgenfrei, Ryan Field
  • Patent number: 11136647
    Abstract: A method for generating alkali metal in a zero oxidation state includes reacting an alkali metal compound having a —S-M substituent, where M is an alkali metal and S is sulfur, with gold in a zero oxidation state to release the alkali metal in the zero oxidation state. For example, an alkali metal alkylthiolate can be reacted with a gold in a zero oxidation state to release the alkali metal in the zero oxidation state. As another example, an alkali metal sulfide can be reacted with gold in a zero oxidation state to release the alkali metal in the zero oxidation state. The alkali metal may be used in various applications including vapor cells, magnetometers, and magnetic field measurement systems.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: October 5, 2021
    Assignee: HI LLC
    Inventors: Sukanta Bhattacharyya, Daniel Sobek
  • Patent number: 11131724
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit and a controller. The wearable sensor unit includes 1) a magnetometer comprising a photodetector and 2) a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometer from ambient background magnetic fields. The controller is configured to interface with the magnetometer and the magnetic field generator and includes a differential signal measurement circuit configured to measure current output by the photodetector.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Stephen Garber, Jerry Leung, Ethan Pratt, Hooman Mohseni, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11132625
    Abstract: A system for training a neurome that emulates a brain of a user comprises a non-invasive brain interface assembly configured for detecting neural activity of the user in response to analog instances of a plurality of stimuli peripherally input into the brain of the user from at least one source of content, memory configured for storing a neurome configured for outputting a plurality of determined brain states of an avatar in response to inputs of the digital instances of the plurality of stimuli, and a neurome training processor configured for determining a plurality of brain states of the user based on the detected neural activity of the user, and modifying the neurome based on the plurality of determined brain states of the user and the plurality of determined brain states of the avatar.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Bryan Johnson, Ethan Pratt, Jamu Alford, Husam Katnani, Julian Kates-Harbeck, Ryan Field, Gabriel Lerner, Antonio H. Lara
  • Patent number: 11131725
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit that includes a magnetometer, a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometer from ambient background magnetic fields, a twisted pair cable interface assembly electrically connected to the magnetometer, and a coaxial cable interface assembly electrically connected to the magnetic field generator.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Stephen Garber, Jamu Alford, Michael Henninger, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11131723
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit and a single controller. The wearable sensor unit includes a plurality of magnetometers and a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometers from ambient background magnetic fields. The single controller is configured to interface with the magnetometers and the magnetic field generator.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Stephen Garber, Teague Lasser, Benjamin Siepser, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman
  • Patent number: 11131729
    Abstract: An optically pumped magnetometer device includes a first vapor cell having a light input window; a first light source configured to produce a first light beam; a first prism optic configured to receive the first light beam from the first light source and redirect the first light beam into the first vapor cell at a non-normal direction relative to the light input window of the first vapor cell; and a first light detector configured to receive the first light beam after passing through the first vapor cell. The device may also include additional light sources and light detectors which may share the prism optic and vapor cell (or utilize another prism optic or vapor cell or both).
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventor: Ethan Pratt
  • Publication number: 20210294884
    Abstract: An authentication system comprises a brain-computer interface (BCI) configured for detecting neural activity in a brain of a subject in response to the subject performing a repeatable mental task, and outputting neural data representative of the detected neural activity. The authentication system further comprises a computer configured for acquiring the neural data output by the BCI while the subject is performing the repeatable mental task, and generating an authorization request containing the neural data. The authentication system further comprises an authentication processor configured for acquiring the authorization request containing the neural data from the computer, authenticating the subject based on the acquired authorization request, and sending an authorization token to the computer.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Applicant: HI LLC
    Inventors: Teague Lasser, Gabriel Lerner, Benjamin Siepser, Jamu Alford, Julian Kates-Harbeck, Bryan Johnson
  • Patent number: 11119039
    Abstract: Source light having a range of optical wavelengths is generated. The source light is split into sample light and reference light. The sample light is delivered into a sample, such that it is scattered by the sample, resulting in signal light that exits the sample. The signal light and reference light are combined into an interference light pattern having optical modes. Different subsets of the optical modes of the interference light pattern are respectively detected, and high-bandwidth analog signals respectively corresponding to the different subsets of optical modes of the interference light pattern are output. At least one characteristic is extracted from each of the plurality of high-bandwidth analog signals, and low-bandwidth digital signals respectively comprising the extracted characteristics are output. The sample is analyzed based on the low-bandwidth digital signals.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: September 14, 2021
    Assignee: HI LLC
    Inventors: Hooman Mohseni, Haowen Ruan
  • Publication number: 20210275083
    Abstract: A system for training a neurome that emulates a brain of a user comprises a non-invasive brain interface assembly configured for detecting neural activity of the user in response to analog instances of a plurality of stimuli peripherally input into the brain of the user from at least one source of content, memory configured for storing a neurome configured for outputting a plurality of determined brain states of an avatar in response to inputs of the digital instances of the plurality of stimuli, and a neurome training processor configured for determining a plurality of brain states of the user based on the detected neural activity of the user, and modifying the neurome based on the plurality of determined brain states of the user and the plurality of determined brain states of the avatar.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 9, 2021
    Applicant: HI LLC
    Inventors: Bryan Johnson, Ethan Pratt, Jamu Alford, Husam Katnani, Julian Kates-Harbeck, Ryan Field, Gabriel Lemer, Antonio H. Lara
  • Patent number: 11096585
    Abstract: A non-invasive optical measurement system comprises an optical source for generating source light, and an interferometer for splitting the source light into sample light and reference light, delivering the sample light into an anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, and combining the signal light and the reference light into at least three phase-modulated interference light patterns. The optical path lengths of the respective source light and sample light match within a coherence length of the source light.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: August 24, 2021
    Assignee: HI LLC
    Inventors: Haojiang Zhou, Roarke Horstmeyer, Haowen Ruan, Yuecheng Shen, Jamu Alford
  • Patent number: 11096620
    Abstract: An optical measurement system includes a wearable module assembly configured to be worn on a body of a user. The wearable module assembly includes a plurality of wearable modules and a connecting assembly. Each wearable module includes a light source configured to emit a light pulse toward a target within the body of the user and a plurality of detectors configured to receive photons included in the light pulse after the photons are scattered by the target. The connecting assembly physically and flexibly connects the plurality of wearable modules such that the wearable module assembly is conformable to a three-dimensional (3D) surface of the body of the user when the wearable module assembly is worn on the body of the user.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: August 24, 2021
    Assignee: HI LLC
    Inventors: Scott Jeremy Seidman, Ryan Field, Husam Katnani, Katherine Perdue, Isai Olvera, Alan Millman, Zachary Phillip Sheldon
  • Publication number: 20210251542
    Abstract: A mental state awareness system comprises a non-invasive brain interface assembly configured for detecting brain activity of a user, a processor configured for determining a mental state of a user based on the detected brain activity, and a biofeedback device configured for automatically providing biofeedback to the user indicative of the determined mental state of the user.
    Type: Application
    Filed: February 17, 2021
    Publication date: August 19, 2021
    Applicant: HI LLC
    Inventors: Bryan Johnson, Husam Katnani, Jumu Alford, Ricardo Jimenez-Martinez
  • Publication number: 20210244328
    Abstract: A calibration system for a magnetometer having an unknown gain is disclosed. A calibration magnetic field is generated at a calibration frequency of a known amplitude at the magnetometer. A measurement of the calibrating magnetic field is reported by the magnetometer. A ratio of an amplitude of the calibration magnetic field measurement reported by the magnetometer and the known amplitude of the calibrating magnetic field at the magnetometer is computed. The unknown gain of the magnetometer is determined at least partially based on computed ratio.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 12, 2021
    Applicant: HI LLC
    Inventors: Julian Kates-Harbeck, Vincent Maurice, Ricardo Jimenez-Martinez, Jamu Alford, Benjamin Shapiro
  • Publication number: 20210247468
    Abstract: Measurements of an arbitrary magnetic field having one or more magnetic field components are acquired from a plurality of magnetometers, and a generic model of at least one of the one or more magnetic field components of the arbitrary magnetic field is generated in the vicinity of the magnetometers. The generic magnetic field model comprises an initial number of different basis functions. Maxwell's equations are applied to the generic magnetic field model to reduce the initial number of different basis functions, thereby yielding a Maxwell-constrained model of the magnetic field component(s) of the arbitrary magnetic field, and the magnetic field component(s) of the arbitrary magnetic field are estimated at each of at least one of the magnetometers based on the constrained magnetic field model and the arbitrary magnetic field measurements acquired from each magnetometer.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 12, 2021
    Applicant: HI LLC
    Inventors: Benjamin Shapiro, Zachary Bednarke, Ricardo Jiménez-Martínez, Julian Kates-Harbeck
  • Publication number: 20210244329
    Abstract: An actuated magnetic field is generated at a plurality of distinct frequencies that at least partially cancels an outside magnetic field at the plurality of distinct frequencies, thereby yielding a total residual magnetic field. The total residual magnetic field is coarsely detected and a plurality of coarse error signals are respectively output. The total residual magnetic field is finely detected and a plurality of fine error signals are respectively output. The actuated magnetic field is controlled respectively at the plurality of distinct frequencies at least partially based on at least one of the plurality of coarse error signals, and finely controlled respectively at the plurality of distinct frequencies at least partially based on at least one of the plurality of fine error signals.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 12, 2021
    Applicant: HI LLC
    Inventors: Micah Ledbetter, Ricardo Jimenez-Martinez, Julian Kates-Harbeck, Benjamin Siepser, Benjamin Shapiro
  • Publication number: 20210244330
    Abstract: At least one magnetic field actuator is configured for generating an actuated magnetic field that at least partially cancels an outside magnetic field, thereby yielding a total residual magnetic field. A plurality of magnetometers are configured for taking measurements of the total residual magnetic field. The magnetometers include a plurality of coarse magnetometers and a plurality of fine magnetometers. A processor is configured for acquiring the total residual magnetic field measurements from the coarse magnetometers, estimating the total residual magnetic field at the fine magnetometers based on total residual magnetic field measurements acquired from the plurality of coarse magnetometers, and controlling the actuated magnetic field at least partially based on the total residual magnetic field estimates at the fine magnetometers in a manner that suppresses the total residual magnetic field at the fine magnetometers to a baseline level, such that at least one of the fine magnetometers is in-range.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 12, 2021
    Applicant: HI LLC
    Inventors: Benjamin Shapiro, Ricardo Jimenez-Martinez, Julian Kates-Harbeck, Zachary Bednarke, Jamu Alford
  • Publication number: 20210247471
    Abstract: An active shield magnetometry system comprises at least one magnetic field actuator configured for generating an actuated magnetic field that at least partially cancels an outside magnetic field, thereby yielding a total residual magnetic field. The active shield magnetometry system further comprises a plurality of magnetometers respectively configured for measuring the total residual magnetic field and outputting a plurality of total residual magnetic field measurements. The active shield magnetometry system further comprises at least one feedback control loop comprising at least one optimal linear controller configured for controlling the actuated magnetic field at least partially based on at least one of the plurality of total residual magnetic field measurements respectively output by at least one of the plurality of magnetometers.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 12, 2021
    Applicant: HI LLC
    Inventors: Benjamin Shapiro, Ricardo Jimenez-Martinez, Julian Kates-Harbeck