Abstract: An exemplary system includes a PLL circuit and a precision timing circuit connected to the PLL circuit. The PLL circuit has a PLL feedback period defined by a reference clock and includes a voltage controlled oscillator configured to lock to the reference clock and having a plurality of stages configured to output a plurality of fine phase signals each having a different phase, and a feedback divider configured to be clocked by a single fine phase signal included in the plurality of fine phase signals and have a plurality of feedback divider states during the PLL feedback period. The precision timing circuit is configured to generate a timing pulse and set, based on a first combination of one of the fine phase signals and one of the feedback divider states, a temporal position of the timing pulse within the PLL feedback period.
Type:
Grant
Filed:
December 22, 2021
Date of Patent:
February 7, 2023
Assignee:
HI LLC
Inventors:
Jacob Dahle, Bruno Do Valle, Rong Jin, Ryan Field, Sebastian Sorgenfrei
Abstract: The source light having a range of optical wavelengths is split into sample light and reference light. The sample light is delivered into a sample, such that the sample light is scattered by the sample, resulting in signal light that exits the sample. The signal light and the reference light are combined into an interference light pattern having optical modes having oscillation frequency components respectively corresponding to optical pathlengths extending through the sample. Different sets of the optical modes of the interference light pattern are respectively detected, and high-bandwidth analog signals representative of the optical modes of the interference light pattern are output. The high-bandwidth analog signals are parallel processed, and mid-bandwidth digital signals are output. The mid-bandwidth digital signals are processed over an i number of iterations, and a plurality of low-bandwidth digital signals are output on the ith iteration.
Type:
Grant
Filed:
June 8, 2021
Date of Patent:
January 31, 2023
Assignee:
HI LLC
Inventors:
Hooman Mohseni, Haowen Ruan, Sebastian Sorgenfrei, Ryan Field
Abstract: An optical source sweeps a source light over an optical wavelength range. An interferometer splits the source light into sample light and reference light, delivers the sample light into an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, and combines the signal light and the reference light into an interference light pattern having an array of spatial components and a plurality of oscillation frequency components. An optical detector array detects intensity values of the array of spatial components.
Abstract: An illustrative system includes a brain interface system configured to be worn by a user and to output brain measurement data representative of brain activity of the user while the user is engaged in an electronic messaging session provided by an electronic messaging platform and a computing device configured to obtain the brain measurement data, determine, based on the brain measurement data, a graphical emotion symbol representative of a mental state of the user while the user is engaged in the electronic messaging session, and provide the graphical emotion symbol for use during the electronic messaging session.
Abstract: An exemplary wearable brain interface system includes a head-mountable component and a control system. The head-mountable component includes an array of photodetectors that includes a photodetector comprising a single-photon avalanche diode (SPAD) and a fast-gating circuit configured to arm and disarm the SPAD. The control system is for controlling a current drawn by the array of photodetectors.
Type:
Grant
Filed:
May 21, 2021
Date of Patent:
December 27, 2022
Assignee:
HI LLC
Inventors:
Bruno Do Valle, Ryan Field, Jacob Dahle, Rong Jin, Sebastian Sorgenfrei
Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit that includes a magnetometer and a twisted pair cable interface assembly electrically connected to the magnetometer.
Type:
Grant
Filed:
August 26, 2021
Date of Patent:
December 13, 2022
Assignee:
HI LLC
Inventors:
Stephen Garber, Jamu Alford, Michael Henninger, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
Abstract: An illustrative research support computing system maintains subject data representative of attributes for research subjects included in a potential subject pool for potential research studies. The system receives, from a client device, an input dataset representative of: 1) a set of parameters defining a research study to be conducted with respect to a research subject group, and 2) a set of criteria for research subjects that are to be included in the research subject group. The system designates a research subject included in the potential subject pool for inclusion in the research subject group based on the set of criteria, and receives research data detected for the research subject in accordance with the set of parameters. The system also provides an output dataset generated based on the research data detected for the research subject in accordance with the set of parameters. Corresponding methods and systems are also disclosed.
Type:
Grant
Filed:
February 16, 2021
Date of Patent:
November 29, 2022
Assignee:
HI LLC
Inventors:
Husam Katnani, Antonio H. Lara, Alejandro Ojeda, Julien Dubois, Viktoria Rojkova, Bryan Johnson, Gabriel Lerner
Abstract: A magnetic field measurement system includes a wearable device having a plurality of wearable sensor units. Each wearable sensor unit includes a plurality of magnetometers and a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the plurality magnetometers from ambient background magnetic fields. A strength of a fringe magnetic field generated by the magnetic field generator of each of the wearable sensor units is less than a predetermined value at the plurality of magnetometers of each wearable sensor unit included in the plurality of wearable sensor units.
Type:
Grant
Filed:
April 30, 2020
Date of Patent:
November 22, 2022
Assignee:
HI LLC
Inventors:
Jamu Alford, Michael Henninger, Stephen Garber, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
Abstract: A non-invasive optical measurement system comprises a two-dimensional array of photonic integrated circuits (PICs) mechanically coupled to each other. Each PIC is configured for emitting sample light into an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure. Each PIC is further configured for detecting the signal light. The non-invasive optical measurement system further comprises processing circuitry configured for analyzing the detected signal light from each of the PICs, and based on this analysis, determining an occurrence and a three-dimensional spatial location of the physiological event in the anatomical structure.
Abstract: A magnetic field measurement system includes at least one magnetometer having a vapor cell, a light source to direct light through the vapor cell, and a detector to receive light directed through the vapor cell; at least one magnetic field generator disposed adjacent the vapor cell; and a feedback circuit coupled to the at least one magnetic field generator and the detector of the at least one magnetometer. The feedback circuit includes a first feedback loop that includes a first low pass filter with a first cutoff frequency and a second feedback loop that includes a second low pass filter with a second cutoff frequency. The first and second feedback loops are configured to compensate for magnetic field variations having a frequency lower than the first or second cutoff frequency, respectively.
Abstract: A method of making an array of vapor cells for an array of magnetometers includes providing a plurality of separate vapor cell elements, each vapor cell element including at least one vapor cell; arranging the vapor cell elements in an alignment jig to produce a selected arrangement of the vapor cells; attaching at least one alignment-maintaining film onto the vapor cell elements in the alignment jig; transferring the vapor cells elements and the at least one alignment-maintaining film from the alignment jig to a mold; injecting a bonding material into the mold and between the vapor cell elements to bond the vapor cell elements in the selected arrangement; removing the at least one alignment maintaining film from the vapor cell elements; and removing the bonded vapor cells elements in the selected arrangement from the mold to provide the array of vapor.
Type:
Grant
Filed:
November 3, 2020
Date of Patent:
October 18, 2022
Assignee:
HI LLC
Inventors:
Scott Jeremy Seidman, Ethan Pratt, Jeffery Kang Gormley, Dakota Blue Decker, Micah Ledbetter
Abstract: An array of optically pumped magnetometers includes an array of vapor cells; and an array of beam splitters. The array of beam splitters is arranged into columns, including a first column, and rows. Each row and each column includes at least two of the beam splitters. The array of beam splitters is configured to receive light into the first column of the array and to distribute that light from the first column into each of the rows and to distribute the light from each of the rows into a plurality of individual light beams directed toward the vapor cells.
Abstract: An illustrative optical measurement device includes a light source configured to emit light pulses directed at a target. The optical measurement device further includes a detector configured to detect arrival times for photons of the light pulses after the photons are scattered by the target. The optical measurement device further includes a processing unit configured to generate, based on the arrival times of the photons at the detector, histogram data associated with the target. The processing unit is further configured to determine, based on the histogram data, an absolute optical property associated with the target. The processing unit is further configured to determine, based on the absolute optical property, a blood oxygenation level of the user, and perform an operation based on the blood oxygenation level.
Type:
Grant
Filed:
December 14, 2021
Date of Patent:
September 27, 2022
Assignee:
HI LLC
Inventors:
Ryan Field, Michael Henninger, Katherine Perdue, Isai Olvera, Hamid Dehghani, Julian Kates-Harbeck, Antonio H. Lara, Bryan Johnson, Victoria A. Poissant
Abstract: Source light having a range of optical wavelengths is generated. The source light is split into sample light and reference light. The sample light is delivered into a sample, such that the sample light is scattered by the sample, resulting in signal light that exits the sample. The signal light and the reference light are combined into an interference light pattern having optical modes, each having a direct current (DC) component and at least one alternating current (AC) component. Different subsets of the optical modes of the interference light pattern are respectively detected, and analog signals representative of the optical modes of the interference light pattern are output. Pair of the analog signals are subtracted from each other, and differential analog signals are output. The sample is analyzed based on the differential analog signals.
Abstract: An illustrative wearable brain interface system includes a headgear configured to be worn on a head of a user and a plurality of photodetector units configured to attach to the headgear, the photodetector units each housing a photodetector included in a plurality of photodetectors configured to be controlled by a master control unit to detect photons of light.
Type:
Grant
Filed:
March 26, 2021
Date of Patent:
September 6, 2022
Assignee:
HI LLC
Inventors:
Husam Katnani, Ryan Field, Bruno Do Valle, Rong Jin, Jacob Dahle
Abstract: A non-invasive self-autonomous system and method of optimizing a lifestyle regimen of a person containing a combination of lifestyle variables is provided. At least one value of the combination of lifestyle variables is repeatedly modified, thereby creating different variations of the combination of lifestyle variables respectively having different sets of values. The different variations of the combination of lifestyle variables are sequentially administered to the person. Physiological activity of the person is detected in response to the administration of the combination of lifestyle variables to the person. Sets of qualitative indicators of an aspect of a lifestyle of the person are derived from the detected physiological activity of the person. The lifestyle regimen of the person is optimized based on the different variations of the combination of lifestyle variables and the derived sets of qualitative indicators.
Type:
Application
Filed:
February 4, 2022
Publication date:
September 1, 2022
Applicant:
HI LLC
Inventors:
Bryan Johnson, Julian Kates-Harbeck, Ryan Field, Patrick House, Katherine Perdue
Abstract: A magnetic field recording system includes a headgear for a user; optically pumped magnetometers (OPMs) disposed in or on the headgear to detect magnetic fields and, in response to the detection, produce magnetic field data; at least one sensing modality including an optical sensing modality having at least one light source and at least one camera or light detector to receive light reflected or directed from the user and to produce an optical data stream; a tracking unit to receive the optical data stream and track a position or orientation of the headgear or user; a system controller to control operation of the OPMs and receive, from the tracking unit, the position or orientation of the headgear or user; and a processor to receive the optical data stream and the magnetic field data from the OPMs and analyze the magnetic field data using the optical data stream for validation.
Abstract: An optical measurement system comprising an optical source configured for delivering sample light in an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, an optical detector configured for detecting the physiological-encoded signal light, and a processor configured for acquiring a TOF profile derived from the physiological-encoded signal light, the initial TOF profile having an initial contrast-to-noise ratio (CNR) between a plurality of states of a physiological activity in the anatomical structure. The processor is further configured for applying one or more weighting functions to the initial TOF profile to generate a weighted TOF profile having a subsequent CNR greater than the initial CNR between the plurality of states of the physiological activity.
Type:
Grant
Filed:
August 6, 2019
Date of Patent:
August 16, 2022
Assignee:
HI LLC
Inventors:
Jamu Alford, Adam Marblestone, Ivo Vellekoop, Daniel Sobek, Michael Henninger, Brian Robinson, Yuecheng Shen, Roarke Horstmeyer
Abstract: A calibration arrangement of a magnetic field measurement device includes at least one attachment point nub configured for attachment to the magnetic field measurement device; mounting arms extending from the at least one attachment point nub; and reference coil loops distributed among the mounting arms. A magnetic field measurement system includes the calibration arrangement and a magnetic field measurement device including a sensor mounting body, magnetic field sensors disposed on or within the sensor mounting body, and at least one primary attachment point formed in or on the sensor mounting body configured to receive the at least one attachment point nub of the calibration arrangement.
Abstract: An illustrative wearable system includes a head-mountable component configured to be worn on a head of a user and a processor. The head-mountable component includes a time-to-digital converter (TDC) configured to receive, during a predetermined event detection time window that commences in response to an application of a light pulse to a target, a signal triggered by an event in which a photodetector detects a photon of the light pulse after the light pulse reflects from the target, the signal configured to enable a GRO of the TDC. The TDC is further configured to measure, using the GRO, a time interval between when the event occurred and an end of the predetermined event detection time window. The processor is configured to determine, based on the time interval and the predetermined event detection time window, an arrival time of the photon at the photodetector.
Type:
Grant
Filed:
November 11, 2020
Date of Patent:
July 26, 2022
Assignee:
HI LLC
Inventors:
Sebastian Sorgenfrei, Jacob Dahle, Ryan Field, Bruno Do Valle, Rong Jin