Patents Assigned to Hitachi Global Storage Technologies
  • Publication number: 20130026131
    Abstract: The present disclosure describes a method for manufacturing a full wraparound shield damascene write head through the implementation of a three layered (tri-layered) hard mask. According to an embodiment of the invention, the various layers of hard mask are used for different purposes during the formation of a write head. The wraparound shield head of the present invention exhibits improved physical characteristics that further result in improved performance characteristics. Use of the hard mask layers according to the present invention allows for use of manufacturing processes that can be more closely controlled than those processes used in other processes. For example, smaller dimension lithographic techniques can be used. Also, reliance on certain CMP processes is not necessary where the use of CMP processes is not as well-controlled as deposition or lithographic techniques as is possible using the present invention.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Shiwen Huang, Fenglin Liu, Qiping Zhong, Kyusik Shin, Yingjian Chen
  • Publication number: 20130027803
    Abstract: In one embodiment, a magnetic head includes a main magnetic pole, a first MAMR element positioned above and wider than the main magnetic pole that is positioned to extend beyond sides of the main magnetic pole in a track width direction, a spin-rectifying-current-pinned-magnetic layer, a magnetic interlayer, a FGL, a magnetic-zone-control layer, and a second MAMR element that is wider than the main magnetic pole and is positioned to extend beyond sides of the main magnetic pole in the track width direction positioned above the first MAMR element, and a trailing shield positioned above the second MAMR element, wherein the main magnetic pole is adapted for producing a high-frequency magnetic field comprising oscillating microwaves, wherein during a writing operation, current is applied to the first and second MAMR elements to produce magnetic fields which oppose bit-switching in the magnetic medium to avoid adjacent track bit reversal.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hiroyasu Tanabe, Masafumi Mochizuki
  • Patent number: 8363355
    Abstract: A magnetic head, according to one embodiment, includes a microwave generator provided with a main magnetic pole, an auxiliary magnetic pole, a coil wound around a magnetic circuit, the magnetic circuit including the main magnetic pole and the auxiliary magnetic pole, and a magnetic film, the film being provided near an ABS side of the main magnetic pole. A first distance in an element thickness direction between film surfaces of the magnetic film and the main magnetic pole at a top end in an element height direction of the microwave generator is greater than a second distance between film surfaces of the magnetic film comprising the microwave generator and the main magnetic pole at the ABS. In other approaches, the main magnetic pole may have a shape which gradually widens from a flare point away from the ABS in an element height direction. Additional systems and methods are also presented.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: January 29, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Masafumi Mochizuki, Masukazu Igarashi
  • Publication number: 20130022840
    Abstract: A method for manufacturing a magnetic write head having a write pole with a tapered leading edge formed on a substrate having a tapered surface and a wrap-around, trailing magnetic shield. The method uses a multi-layer anti-reflective coating prior to formation of the shield so that reflection from the tapered surface of the substrate does not affect the lithography of the mask used to form the trailing shield. The multi-layer antireflective coating is constructed of materials that can be left in the finished head, thereby eliminating problems associated with removal of the anti-reflective coating.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B. V.
    Inventors: Wen-Chien D. Hsiao, Ning Shi, Yi Zheng
  • Publication number: 20130019467
    Abstract: A method for manufacturing a magnetic write head having a write pole with a very narrow track width, straight well defined sides and a well defined trailing edge width (e.g. track-width). The method includes uses two separate chemical mechanical polishing processes that stop at separate CMP stop layers. The first CMP stop layer is deposited directly over a RIEable fill layer. A RIE mask, is formed over the fill layer and first CMP stop layer, the RIE mask having an opening. A trench then is formed in the RIEable fill layer. A second CMP stop layer is then deposited into the trench and over the RIE mask, followed by plating of a magnetic material. First and second chemical mechanical polishing processes are then performed, the first stopping at the first CMP stop and the second stopping at the second CMP stop.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Sue Siyang Zhang, Yi Zheng, Qiping Zhong, Honglin Zhu
  • Publication number: 20130016444
    Abstract: A method for manufacturing a patterned magnetic media. The method allows both a data region and a servo region to be patterned without the patterning of one region adversely affecting the patterning of the other region. The method results in a patterned data region a patterned servo region and intermediate regions between the servo and data regions. The intermediate regions, which are most likely, but not necessarily, asymmetrical with one another indicate that the method has been used to pattern the media.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael K. Grobis, Jeffrey S. Lille, Ricardo Ruiz
  • Patent number: 8355300
    Abstract: A thermally-assisted recording (TAR) bit-patterned-media (BPM) magnetic recording disk drive uses optical detection of synchronization fields for write synchronization and optical detection of servo sectors for read/write head positioning. The synchronization fields and servo sectors extend generally radially across the data tracks and are patterned into discrete nondata blocks separated by gaps in the along-the-track direction. A near-field transducer (NFT) directs laser radiation to the disk and generates a power absorption profile on the disk that has a characteristic along-the-track spot size less than the along-the-track length of the gaps between the nondata blocks in the synchronization fields and servo sectors.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: January 15, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael Konrad Grobis, Manfred Ernst Schabes, Barry Cushing Stipe
  • Patent number: 8354034
    Abstract: A magnetic head suitable for high-density recording is provided at a high yield by a method that suppresses a reduction in reproducing output signal due to ion-beam irradiation. After an air-bearing surface of a read element, a magnetic-head element, or a row bar is mechanically polished, the air-bearing surface is irradiated with an ion beam, such that an orthographic projection of an ion-beam incidence direction onto the air-bearing surface forms an in-plane incidence angle of 30 degrees to 150 degrees or of 210 degrees to 330 degrees with respect to a track-width direction. Thereby, the formation of a short circuit due to ion-beam irradiation may be hindered.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: January 15, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands BV
    Inventors: Nobuto Yasui, Shinji Sasaki, Kazuhito Miyata, Mineaki Kodama
  • Patent number: 8355224
    Abstract: Embodiments of the present invention help to prevent a head characteristic from being deteriorated by re-deposition or damage which occurs when a sensor film is etched, a track width is narrowed, and the head characteristic is stabilized. According to one embodiment, when it is assumed that the thickness of the sensor film on an air bearing surface is T, and a distance between an end of a medium layer that is interposed between a free layer and a pinned layer which comprise the sensor film and an end of the sensor film lowest portion, a relationship of 1.2×T?X?2.5×T is satisfied, and the ends of a pair of magnetic films which are in contact with both sides in the track-width direction through an insulator do not exist in the track central portion from the free layer end.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: January 15, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Satoru Okamoto, Koji Okazaki, Shuuichi Kojima, Nobuo Yoshida, Katsuro Watanabe, Hiroyuki Katada
  • Patent number: 8351165
    Abstract: A current-perpendicular-to-the-plane spin-valve (CPP-SV) magnetoresistive sensor has a ferromagnetic alloy comprising Co, Fe and Ge in the sensor's free layer and/or pinned layer and a spacer layer of Ag, Cu or a AgCu alloy between the free and pinned layers. The sensor may be a simple pinned structure, in which case the pinned layer may be formed of the CoFeGe ferromagnetic alloy. Alternatively, the sensor may have an AP-pinned layer structure, in which case the AP2layer may be formed of the CoFeGe ferromagnetic alloy. The Ge-containing alloy comprises Co, Fe and Ge, wherein Ge is present in the alloy in an amount between about 20 and 40 atomic percent, and wherein the ratio of Co to Fe in the alloy is between about 0.8 and 1.2.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Matthew J. Carey, Jeffrey R. Childress, Stefan Maat
  • Patent number: 8351154
    Abstract: A perpendicular recording magnetic head is provided, according to one embodiment, in which even if a thickness of a main pole is reduced corresponding to a reduction in a recording track width, recording performance is not degraded. A magnetic-field auxiliary pole and a nonmagnetic layer are stacked on a main pole, and a nonmagnetic portion is provided on each side face on a flying surface side of the magnetic-field auxiliary pole and the nonmagnetic layer, in one approach. In all regions except for a region near a flying surface, an interval between the main pole and a shield is increased by the nonmagnetic portion and the nonmagnetic layer, so that magnetic field loss is prevented, and consequently magnetic field strength and a magnetic field gradient are increased. Other systems and methods are also disclosed for retaining magnetic recording performance while reducing a thickness of a main pole.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kimitoshi Etoh, Mikito Sugiyama, Isao Nunokawa, Tomohiro Okada
  • Patent number: 8351155
    Abstract: A perpendicular magnetic recording hard disk drive includes a write head with a write pole and an electrically conductive coil coupled to the write pole, a write driver for supplying electrical write current to the coil to generate magnetic flux in the write pole, a spin torque oscillator (STO) that injects auxiliary magnetic flux to the write pole to facilitate magnetization switching of the write pole, and STO control circuitry. Direct electrical current to the STO induces rotation of the magnetization of a free ferromagnetic layer in the STO, which generates the auxiliary magnetic flux. The STO control circuitry may be coupled to the STO via the electrical lines that connect the write driver to the write head, the lines that connect the read amplifier to the read head, or, if the disk drive is one with thermal fly-height control (TFC), the lines that connect the TFC circuitry with the heater.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: John Thomas Contreras, Manfred Ernst Schabes
  • Patent number: 8351153
    Abstract: According to one embodiment, a magnetic recording head includes a main pole having a throat height portion and a flare portion that is connected to the throat height portion, the flare portion gradually being expanded in width to an upper part in an element height direction. The head also includes a sub pole, magnetic shields disposed via a nonmagnetic layer on a trailing side of the main pole and on both sides in a track width direction of the main pole, and a coil for generating a recording magnetic field from the main pole. The nonmagnetic layer has an upper portion of which the thickness is increased stepwise or in a tapered manner in the element height direction with respect to an ABS side, and each portion of the magnetic shields adjacent to the main pole has a shape corresponding to a surface shape of the nonmagnetic layer.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Isao Nunokawa, Mikito Sugiyama, Kikuo Kusukawa, Hiroyuki Hoshiya
  • Patent number: 8347488
    Abstract: A method for manufacturing a magnetic write head having a non-magnetic step layer, non-magnetic bump at the front of the non-magnetic step layer and a write pole with a tapered trailing edge. The tapered portion of the trailing edge of the write pole is formed by a two step process that allows the write pole taper to be formed with greater accuracy and repeatability than would be possible using a single step taper process. An alternative method is also described on how to make a non-magnetic bump structure with adjustable bump throat height prior to Damascene side shield gap formation in a Damascene wrap around shield head.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Liubo Hong, Aron Pentek, Yi Zheng
  • Patent number: 8351156
    Abstract: A perpendicular magnetic recording head according to one embodiment includes a main pole; first magnetic films arranged on both sides of the main pole in a track width direction via nonmagnetic films; and a second magnetic film arranged on a trailing side of the main pole via a nonmagnetic film; wherein the depths of the first magnetic films from an air bearing surface are smaller than the depth of the second magnetic film from the air bearing surface at least at a periphery of the main pole.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kazue Kudo, Hiromi Shiina, Yohji Maruyama, Tetsuya Okai, Gen Oikawa, Shouji Tokutake
  • Patent number: 8349197
    Abstract: A method for manufacturing a magnetic write head having a write pole and a trailing wrap around magnetic shield, and having a non-magnetic step layer and a non-magnetic bump to provide additional spacing between the write pole and the trailing wrap around shield at a location removed from the air bearing surface. A magnetic write pole material is deposited on a substrate and a non-magnetic step layer is deposited over the write pole. A reactive ion milling can he used to pattern the non-magnetic step layer to have a front edge that is located a desired distance from an air hearing surface. A patterning and ion milling process is then performed to define a write pole, and then a layer of alumina is deposited and ion milled to from a tapered, non-magnetic bump at the front the non-magnetic step layer.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Liubo Hong, Wen-Chien D. Hsiao, Yimin Hsu, Yi Zheng
  • Patent number: 8351163
    Abstract: According to one embodiment, a method for producing a Tunneling Magnetoresistance (TMR) read head includes forming a fixed layer, forming an insulating barrier layer above the fixed layer, forming a free layer above the insulating barrier layer, and annealing the free layer, the fixed layer, and the insulating barrier layer. The fixed layer includes a first ferromagnetic layer having a CoxFe (0?x?15) interface layer and a Co-based amorphous metallic layer between the CoxFe interface layer and the insulating barrier layer, an antiparallel coupling layer below the first ferromagnetic layer, and a second ferromagnetic layer below the antiparallel coupling layer. In another embodiment, a TMR read head includes the layers described above, and may be included in a magnetic data storage system.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Koji Sakamoto, Koichi Nishioka
  • Patent number: 8351144
    Abstract: Embodiments of the present invention help to suppress the effects of thermal fluctuation in a thermally assisted magnetic field recording, and improve recording density. According to one embodiment, a recording area of a magnetic disk is heated and the full width at half maximum of an optical power distribution of a near field light generator is controlled to be 100 nm or less. Thereby, the cooling time of the magnetic disk is made 2 nm or less and the effects of thermal fluctuation are suppressed. Moreover, although an incomplete area of the magnetization reversal at the rear end of the magnetic domain is created with rapid cooling, by creating an overshoot at the rising end of the magnetic field waveform of the magnetic recording head, the incomplete area of the magnetization reversal can be overwritten, which is created at the rear end of the magnetic domain previously recorded by the overshoot magnetic field.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kimio Nakamura, Fumiko Akagi
  • Patent number: 8347489
    Abstract: A method for manufacturing a magnetic write head having a tapered write pole as well as a leading edge taper, and independent trailing and side magnetic shields. The method allows the write pole to be constructed by a dry process wherein the write pole material is either deposited by a process such as sputter deposition or electrically plated and the write pole shape is defined by masking and ion milling. The write pole has a stepped feature that can either be used to provide increased magnetic spacing between the trailing shield and the write pole at a location slightly recessed from the ABS or can be magnetic material that increases the effective thickness of the write pole at a location slightly recessed from the ABS. A bump structure can be further built over that stepped feature to enhance field gradient as well as reduce trailing shield saturation.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Liubo Hong, Aron Pentek, Yi Zheng, Honglin Zhu
  • Patent number: 8351151
    Abstract: A thermally assisted magnetic write head having a near-field transducer, a magnetic lip and a diffusion barrier layer between the near-field transducer and the magnetic lip. The near-field transducer includes a transparent aperture constructed of a material such as SiO2 and an opaque metallic antenna constructed of a metal such as Au formed at a first edge of the aperture. A magnetic lip, connected with the write pole is formed near a second edge of the aperture with a diffusion barrier layer being disposed between the magnetic lip and the aperture. The diffusion barrier layer prevents migration of atomic between the aperture and the magnetic lip, thereby ensuring robust performance at localized high temperatures generated by the near-field transducer.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Jordan A. Katine, Vijay P. S. Rawat, Neil L. Robertson, Barry C. Stipe