Patents Assigned to Institute of Physics Chinese Academy of Sciences
  • Patent number: 9588061
    Abstract: A measuring whispering-gallery-mode resonator includes: a dielectric resonating body with a rotation axis, a superconducting sample under test mounted to the resonating body and a coupling unit for coupling a measuring waveguide with the resonating body. One side of the resonating body connected with the coupling unit has a first endplate, in which m coupling holes penetrate through the first endplate, and centers of the m coupling holes are arranged to be evenly spaced along a circle whose center is on the rotation axis. The coupling unit has a feeder line which is a coaxial waveguide, and an axis of the coaxial waveguide coincides with the rotation axis. One end surface of the coaxial waveguide, which is perpendicular to the rotation axis, abuts the first endplate; and the azimuth index of operated whispering gallery mode in the resonator is an integer multiple of the number m of the coupling holes.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: March 7, 2017
    Assignees: Institute of Physics, Chinese Academy of Sciences, Beijing Huarong Tianchuang Superconduct Technology Development Co., Ltd., University of Science and Technology Beijing, O. YA. Institute For Radiophysics and Electronics of National Academy of Sciences of Ukraine
    Inventors: Liang Sun, Xu Wang, Jia Wang, Yun Wu, Yusheng He, Hong Li, Jiangming Huang, Sheng Luo, Mykola Cherpak, Valerii Skresanov, Oleksandr Barannyk, Volodymyr Glamazdin, Oleksandr Shubny
  • Patent number: 9568564
    Abstract: The invention discloses a magnetic nano-multilayers structure and the method for making it. The multilayer film includes—sequentially from one end to the other end—a substrate, a bottom layer, a magnetic reference layer, a space layer, a magnetic detecting layer and a cap layer. The, up-stated structure is for convert the information of the rotation of the magnetic moment of the magnetic detecting layer into electrical signals. The magnetic detecting layer is of a pinning structure to react to the magnetic field under detection. On the other hand, the invention sandwiches an intervening layer between the AFM and the FM to mitigate the pinning effect from the exchange bias. Moreover, the thickness of the intervening layer is adjustable to control the pinning effect from the exchange bias. The controllability ensures that the magnetic moments of the magnetic reference layer and the magnetic detecting layer remain at right angles to each other when the external field is zero.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: February 14, 2017
    Assignee: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qinli Ma, Houfang Liu, Xiufeng Han
  • Patent number: 9559295
    Abstract: A nano multilayer film of electrical field modulation type, a field effect transistor of electrical field modulation type, an electrical field sensor of switch type, and a random access memory of electrical field drive type can obtain an electro-resistance effect in an electrical field modulation multilayer film at room temperature. The nano multilayer film includes in succession from bottom to top a bottom layer, a substrate, a bottom layer, a functional layer, a buffer layer, an insulation layer, a conductive layer, and a cap layer. The buffer layer and the insulation layer can be selectively added as required when the conductive layer is made of a magnetic metal. The effect of influencing and changing the conductivity of the metal layer and thus adjusting the change in the resistance of the devices can obtain different resistance states corresponding to different electrical fields and achieving an electro-resistance effect.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: January 31, 2017
    Assignee: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiu-Feng Han, Hou-Fang Liu, Syed Rizwan, Da-Lai Li, Peng Guo, Guo-Qiang Yu, Dong-Ping Liu, Yi-Ran Chen
  • Patent number: 9558909
    Abstract: The present invention discloses a multifunctional ultrafast electron gun of a transmission electron microscopy. The ultrafast electron gun of a transmission electron microscope comprises: a laser source, an electron gun body and a laser introducing module. The electron gun body comprises: an electron gun sleeve comprising a first section sleeve and a second section sleeve; and, a cathode, an acceleration electrode and an anode arranged in up-down order, wherein the cathode and the acceleration electrode are located within the first section sleeve and the anode is located within the second section sleeve.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 31, 2017
    Assignee: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Jianqi Li, Huanfang Tian, Gaolong Cao, Chao Ma, Huaixin Yang
  • Publication number: 20170018395
    Abstract: A nano-patterned system comprises a vacuum chamber, a sample stage and a magnetic-field applying device, which comprises a power supply, a magnetic-field generation device and a pair of magnetic poles. The magnetic-field generation device comprises a coil and a magnetic conductive soft iron core. The power supply is connected to the coil, which is wound on the soft iron core to generate a magnetic field. The soft iron core is of a semi-closed frame structure and the magnetic poles are at the ends of the frame structure. The stage is inside a vacuum chamber. The poles are oppositely arranged inside the vacuum chamber relative to the stage. The coil and the soft iron core are outside the vacuum chamber. The soft iron core leads the magnetic field generated by the coil into the vacuum chamber. The magnetic poles locate a sample on the stage and apply a local magnetic field.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 19, 2017
    Applicant: Institute Of Physics, Chinese Academy Of Sciences
    Inventors: Guoqiang Yu, Peng Guo, Xiufeng Han, Chaohui Guo, Xiaoyu Sun, Xiangqian Zhou
  • Patent number: 9547181
    Abstract: Disclosed are a diffractive optical element, a design method thereof and the application thereof in a solar cell. The design method for a design modulation thickness of a sampling point of the diffractive optical element comprises: calculating the modulation thickness of the current sampling point for each wavelength component; obtaining a series of alternative modulation thicknesses which are mutually equivalent for each modulation thickness, wherein a difference between the corresponding modulation phases is an integral multiple of 2?; and selecting one modulation thickness from the alternative modulation thicknesses of each wavelength to determine the design modulation thickness of the current sampling point. In an embodiment, the design method introduces a thickness optimization algorithm into a Yang-Gu algorithm.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: January 17, 2017
    Assignee: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Guozhen Yang, Bizhen Dong, Yan Zhang, Jiasheng Ye, Qingbo Meng, Qingli Huang, Jinze Wang
  • Patent number: 9537195
    Abstract: A band-pass filter having a body, a rectangular waveguide, and a dielectric insert, the dielectric insert has a dielectric plate and a high temperature superconductive film in line with a plurality of rectangular windows of the same height. The waveguide has a×b cross-section, a being length of the long side walls and b the length of the short side walls. Each long side wall has a fixing groove at the central portion and a rectangular recess in the fixing groove. The dielectric plate has two ends in the fixing grooves and is symmetric with a perpendicular bisecting plane of the long side wall. The rectangular recess is symmetric to the perpendicular bisecting plane and has the same length as that of the waveguide, with its width w satisfying t<w<a/2, and depth d satisfying d<?/4, t being total thickness of the dielectric plate and the high temperature superconductive film, and ? the wavelength of the central frequency of the pass-band of the band-pass filter.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 3, 2017
    Assignees: Institute of Physics, Chinese Academy of Sciences, Beijing HuarontTianchuang Superconduct Tech Dev Co, University of Science and Technology Beijing, Usikov Inst Radiophysics & Electronics, NASU
    Inventors: Liang Sun, Xu Wang, Jia Wang, Yun Wu, Yusheng He, Hong Li, Jiangming Huang, Sheng Luo, Valerii Skresanov, Oleksandr Barannyk, Volodymyr Glamazdin, Volodymyr Zolotarev, Myhaylo Natarov, Mykola Cherpak, Oleksandr Shubnyj
  • Patent number: 9500931
    Abstract: Provided is a nonlinear optical device manufactured with 4H silicon carbide crystal. The nonlinear optical crystal may be configured to alter at least a light beam (12) at a frequency to generate at least a light beam (16) at a further frequency different from the frequency. The nonlinear optical crystal comprises a 4H silicon carbide crystal (13). The nonlinear optical device is more compatible with practical applications in terms of outputting mid-infrared laser at high power and high quality and thus are more applicable in practice, because the 4H silicon carbide crystal has a relatively high laser induced damage threshold, a relatively broad transmissive band (0.38-5.9 ?m and 6.6-7.08 ?m), a relatively great 2nd-order nonlinear optical coefficient (d15=6.7 pm/V), a relatively great birefringence, a high thermal conductivity (490 Wm?1K?1), and a high chemical stability.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: November 22, 2016
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiaolong Chen, Shunchong Wang, Tonghua Peng, Gang Wang, Chunjun Liu, Wenjun Wang, Shifeng Jin
  • Patent number: 9484138
    Abstract: A nano-patterned system comprises a vacuum chamber, a sample stage and a magnetic-field applying device. The magnetic-field applying device comprises a power supply, magnetic poles, and a magnetic-field generation device having a magnetic conductive soft iron core and a coil connected to the power supply and wound on the soft iron core to generate a magnetic field. The soft iron core is a semi-closed frame structure and the magnetic poles are respectively disposed at the two ends of the semi-closed frame structure. The sample stage is inside the vacuum chamber. The magnetic poles are opposite one another inside the vacuum chamber with respect to the sample stage. The coil and soft iron core are outside the vacuum chamber. The soft iron core leads the magnetic field generated by the coil into the vacuum chamber. The magnetic poles locate a sample on the sample stage and apply a local magnetic field.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: November 1, 2016
    Assignee: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Guoqiang Yu, Peng Guo, Xiufeng Han, Chaohui Guo, Xiaoyu Sun, Xiangqian Zhou
  • Patent number: 9484527
    Abstract: A magnetic multilayer film for a temperature sensor is disclosed. The magnetic multilayer film comprises: a bottom magnetic composite layer provided on a substrate, the bottom magnetic composite layer having a direct pinning structure, an indirect pinning structure, a synthetic ferromagnetic structure, or a synthetic anti-ferromagnetic structure; a spacer layer provided on the bottom magnetic composite layer; and a top magnetic composite layer provided on the spacer layer, the top magnetic composite layer having the direct pinning structure, the indirect pinning structure, the synthetic ferromagnetic structure, or the synthetic anti-ferromagnetic structure, wherein a ferromagnetic layer of the bottom magnetic composite layer closest to the spacer layer has a magnetic moment anti-parallel with that of a ferromagnetic layer of the top magnetic composite layer closest to the spacer layer.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: November 1, 2016
    Assignee: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiufeng Han, Zhonghui Yuan, Pan Liu, Guoqiang Yu, Jiafeng Feng, Dianlin Zhang
  • Publication number: 20160293945
    Abstract: A layered oxide material, a preparation method, an electrode, a secondary battery and use are disclosed. The layered oxide material has a general chemical formula NaxCuiFejMnkMyO2+?, in which M is an element that is doped for replacing the transition metals; x, y, i, j, k, and ? are respectively the molar ratios of respective elements, provided that x, y, i, j, k, and ? satisfy the relations: y+i++j+k=1, and x+my+2i+3j+4k=2(2+?), where 0.8?x?1, 0<i?0.3, 0<j?0.5, 0<k?0.5, 0.02???0.02, and m is the valence of M. The layered oxide material has a space group of R3m.
    Type: Application
    Filed: June 18, 2015
    Publication date: October 6, 2016
    Applicant: INSTITUTE OF PHYSICS, THE CHINESE ACADEMY OF SCIENCES
    Inventors: Yongsheng HU, Linqin MU, Liquan CHEN
  • Patent number: 9461233
    Abstract: A high-temperature superconducting film includes a SrTiO3 substrate, a single crystalline FeSe layer, and a protective layer with a layered crystal structure. The single crystalline FeSe layer is sandwiched between the SrTiO3 substrate and the protective layer via a layer-by-layer mode. An onset temperature of superconducting transition of the high-temperature superconducting film is greater than or equal to 54 K, and a critical current density of the high-temperature superconducting film is about 106 A/cm2 at 12 K.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: October 4, 2016
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Xu-Cun Ma, Li-Li Wang, Xi Chen, Jin-Feng Jia, Ke He, Shuai-Hua Ji, Wen-Hao Zhang, Qing-Yan Wang, Zhi Li
  • Patent number: 9425375
    Abstract: A method for making a high-temperature superconducting film includes loading a SrTiO3 substrate in an ultra-high vacuum system. A single crystalline FeSe layer is grown on a surface of the SrTiO3 substrate by molecular beam epitaxy. A protective layer with a layered crystal structure is grown by molecular beam epitaxy and covering the single crystalline FeSe layer.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: August 23, 2016
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Xu-Cun Ma, Li-Li Wang, Xi Chen, Jin-Feng Jia, Ke He, Shuai-Hua Ji, Wen-Hao Zhang, Qing-Yan Wang, Zhi Li
  • Patent number: 9394624
    Abstract: A method for forming a topological insulator structure is provided. A strontium titanate substrate having a surface (111) is used. The surface (111) of the strontium titanate substrate is cleaned by heat-treating the strontium titanate substrate in the molecular beam epitaxy chamber. The strontium titanate substrate is heated and Bi beam, Sb beam, Cr beam, and Te beam are formed in the molecular beam epitaxy chamber in a controlled ratio achieved by controlling flow rates of the Bi beam, Sb beam, Cr beam, and Te beam. The magnetically doped topological insulator quantum well film is formed on the surface (111) of the strontium titanate substrate. The amount of the hole type charge carriers introduced by the doping with Cr is substantially equal to the amount of the electron type charge carriers introduced by the doping with Bi.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: July 19, 2016
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Cui-Zu Chang, Xiao Feng, Yao-Yi Li, Jin-Feng Jia
  • Patent number: 9349946
    Abstract: A method for generating quantum anomalous Hall effect is provided. A topological insulator quantum well film in 3QL to 5QL is formed on an insulating substrate. The topological insulator quantum well film is doped with a first element and a second element to form the magnetically doped topological insulator quantum well film. The doping of the first element and the second element respectively introduce hole type charge carriers and electron type charge carriers in the magnetically doped topological insulator quantum well film, to decrease the carrier density of the magnetically doped topological insulator quantum well film to be smaller than or equal to 1×1013 cm?2. One of the first element and the second element magnetically dopes the topological insulator quantum well film. An electric field is applied to the magnetically doped topological insulator quantum well film to decrease the carrier density.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: May 24, 2016
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Ya-Yu Wang, Li Lv, Cui-Zu Chang, Xiao Feng
  • Patent number: 9340898
    Abstract: A technology for growing silicon carbide single crystals by PVT (Physical Vapor Transport) and a technology for in-situ annealing the crystals after growth is finished is provided. The technology can achieve real-time dynamic control of the temperature distribution of growth chamber by regulating the position of the insulation layer on the upper part of the graphite crucible, thus controlling the temperature distribution of growth chamber in real-time during the growth process according to the needs of the technology, which helps to significantly improve the crystal quality and production yield.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 17, 2016
    Assignees: Tankeblue Semiconductor Co. Ltd., Institute of Physics Chinese Academy of Sciences
    Inventors: Xiaolong Chen, Bo Wang, Longyuan Li, Tonghua Peng, Chunjun Liu, Wenjun Wang, Gang Wang
  • Patent number: 9159909
    Abstract: An electrical device includes an insulating substrate and a magnetically doped TI quantum well film. The insulating substrate includes a first surface and a second surface. The magnetically doped topological insulator quantum well film is located on the first surface of the insulating substrate. A material of the magnetically doped topological insulator quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3, wherein 0<x<1, 0<y<2, and values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi, the magnetically doped topological insulator quantum well film is in 3 QL thickness to 5 QL thickness.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: October 13, 2015
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Ya-Yu Wang, Li Lv, Cui-Zu Chang, Xiao Feng
  • Patent number: 9142760
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0.05<x<0.3, 0<y<0.3, and 1:2<x:y<2:1. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: September 22, 2015
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Cui-Zu Chang, Xiao Feng, Yao-Yi Li, Jin-Feng Jia
  • Publication number: 20150123754
    Abstract: A nano-patterned system comprises a vacuum chamber, a sample stage and a magnetic-field applying device. The magnetic-field applying device comprises a power supply, magnetic poles, and a magnetic-field generation device having a magnetic conductive soft iron core and a coil connected to the power supply and wound on the soft iron core to generate a magnetic field. The soft iron core is a semi-closed frame structure and the magnetic poles are respectively disposed at the two ends of the semi-closed frame structure. The sample stage is inside the vacuum chamber. The magnetic poles are opposite one another inside the vacuum chamber with respect to the sample stage. The coil and soft iron core are outside the vacuum chamber. The soft iron core leads the magnetic field generated by the coil into the vacuum chamber. The magnetic poles locate a sample on the sample stage and apply a local magnetic field.
    Type: Application
    Filed: July 7, 2012
    Publication date: May 7, 2015
    Applicant: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Guoqiang Yu, Peng Guo, Xiufeng Han, Chaohui Guo, Xiaoyu Sun, Xiangqian Zhou
  • Patent number: 9018617
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0<x<1, 0<y<2. Values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: April 28, 2015
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Cui-Zu Chang, Xiao Feng, Yao-Yi Li, Jin-Feng Jia