Patents Assigned to Institute of Physics Chinese Academy of Sciences
  • Publication number: 20150085349
    Abstract: Provided is a nonlinear optical device manufactured with 4H silicon carbide crystal. The nonlinear optical crystal may be configured to alter at least a light beam (12) at a frequency to generate at least a light beam (16) at a further frequency different from the frequency. The nonlinear optical crystal comprises a 4H silicon carbide crystal (13). The nonlinear optical device is more compatible with practical applications in terms of outputting mid-infrared laser at high power and high quality and thus are more applicable in practice, because the 4H silicon carbide crystal has a relatively high laser induced damage threshold, a relatively broad transmissive band (0.38-5.9 ?m and 6.6-7.08 ?m), a relatively great 2nd-order nonlinear optical coefficient (d15=6.7 pm/V), a relatively great birefringence, a high thermal conductivity (490 Wm?1K?1), and a high chemical stability.
    Type: Application
    Filed: January 6, 2012
    Publication date: March 26, 2015
    Applicant: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiaolong Chen, Shunchong Wang, Tonghua Peng, Gang Wang, Chunjun Liu, Wenjun Wang, Shifeng Jin
  • Publication number: 20150047371
    Abstract: Provided is a high-strength, bonded La(Fe, Si)13-based magnetocaloric material, as well as a preparation method and use thereof. The magnetocaloric material comprises magnetocaloric alloy particles and an adhesive agent, wherein the particle size of the magnetocaloric alloy particles is less than or equal to 800 ?m and are bonded into a massive material by the adhesive agent; the magnetocaloric alloy particle has a NaZn13-type structure and is represented by a chemical formula of La1-xRx(Fe1-p-qCopMnq)13-ySiyA?, wherein R is one or more selected from elements cerium (Ce), praseodymium (Pr) and neodymium (Nd), A is one or more selected from elements C, H and B, x is in the range of 0?x?0.5, y is in the range of 0.8?y?2, p is in the range of 0?p?0.2, q is in the range of 0?q?0.2, ? is in the range of 0???3.0. Using a bonding and thermosetting method, and by means of adjusting the forming pressure, thermosetting temperature, and thermosetting atmosphere, etc.
    Type: Application
    Filed: May 17, 2012
    Publication date: February 19, 2015
    Applicants: Institute of Physics, Chinese Academy of Sciences, Hubei Quanyang Magnetic Materials Manufacturing Co., Ltd.
    Inventors: Fengxia Hu, Ling Chen, Lifu Bao, Jing Wang, Baogen Shen, Jirong Sun, Huayang Gong
  • Publication number: 20140321199
    Abstract: Disclosed are nano multilayer film of electrical field modulation type, a field effect transistor of electrical field modulation type, an electrical field sensor of switch type, and a random access memory of electrical field drive type, for obtaining an electro-resistance effect in an electrical field modulation multilayer film at room temperature. The nano multilayer film comprises in succession from bottom to top a bottom layer (102), a substrate (101), a bottom layer (103), a functional layer (104), a buffer layer (105), an insulation layer (106), an intermediate conductive layer (107), and a cap layer (108), and the buffer layer (107) and the insulation layer (106) can be selectively added as required when the intermediate conductive layer (107) is a magnetic metal, a magnetic alloy or a magnetic metal composite layer.
    Type: Application
    Filed: September 19, 2012
    Publication date: October 30, 2014
    Applicant: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiu-Feng Han, Hou-Fang Liu, Syed Rizwan, Da-Lai Li, Peng Guo, Guo-Qiang Yu, Dong-Ping Liu, Yi-Ran Chen
  • Publication number: 20140290274
    Abstract: The invention provides a first-order phase-transition La(Fe,Si)13-based magnetocaloric material showing small hysteresis loss, and preparation and use thereof. The material has a NaZn13-type structure, is composed of granules with a particle size in the range of 15˜200 ?m and not less than 15 ?m, and is represented by chemical formula La1-xRx(Fe1-p-qCopMnq)13-ySiyA?. The method for preparing the material comprises steps of preparing the material La1-xRx(Fe1-p-qCopMnq)13-ySiyA? by smelting and annealing; and then crushing the material into powder with a particle size in the range of 15˜200 ?m. Without changing the components, a La(Fe,Si)13-based magnetocaloric material showing small hysteresis loss and strong magnetocaloric effect can be obtained by adjusting the particle size within the range of 15˜200 ?m. Utilization of this type of materials in the practical magnetic refrigeration application is of great significance.
    Type: Application
    Filed: October 24, 2011
    Publication date: October 2, 2014
    Applicant: Institute of Physics, Chinese Academy of Sciences
    Inventors: Fengxia Hu, Ling Chen, Jing Wang, Lifu Bao, Rongrong Wu, Baogen Shen, Jirong Sun, Huayang Gong
  • Publication number: 20140247061
    Abstract: A measuring whispering-gallery-mode resonator, comprising: a dielectric resonating body with a rotation axis; a superconducting sample under test, which is mounted to the resonating body; a coupling unit for coupling a measuring waveguide with the resonating body, wherein one side of the resonating body connected with the coupling unit is provided with a first endplate, wherein m coupling holes penetrate through the first endplate, and centers of the m coupling holes are arranged to be evenly spaced along a circle whose center is on the rotation axis; the coupling unit has a feeder line which is a coaxial waveguide, wherein an axis of the coaxial waveguide coincides with the rotation axis, and one end surface of the coaxial waveguide, which is perpendicular to the rotation axis, abuts to the first endplate; and the axial index of operated whispering gallery mode in the resonator is an integer multiple of the number m of the coupling holes.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 4, 2014
    Applicants: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES, INSTITUTE FOR RADIOPHYSICS AND ELECTRONICS, NAS OF UKRAINE, UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, BEIJING HUARONG TIANCHUANG SUPERCONDUCT TECHNOLOGY DEVELOPMENT CO., LTD
    Inventors: Liang SUN, Xu WANG, Jia WANG, Yun WU, Yusheng HE, Hong LI, Jiangming HUANG, Sheng LUO, Mykola CHERPARK, Valerii SKRESANOV, Oleksandr BARANNYK
  • Publication number: 20140178674
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0.05<x<0.3, 0<y<0.3, and 1:2<x:y<2:1. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, CUI-ZU CHANG, XIAO FENG, YAO-YI LI, JIN-FENG JIA
  • Publication number: 20140174343
    Abstract: A method for forming a topological insulator structure is provided. A strontium titanate substrate having a surface (111) is used. The surface (111) of the strontium titanate substrate is cleaned by heat-treating the strontium titanate substrate in the molecular beam epitaxy chamber. The strontium titanate substrate is heated and Bi beam, Sb beam, Cr beam, and Te beam are formed in the molecular beam epitaxy chamber in a controlled ratio achieved by controlling flow rates of the Bi beam, Sb beam, Cr beam, and Te beam. The magnetically doped topological insulator quantum well film is formed on the surface (111) of the strontium titanate substrate. The amount of the hole type charge carriers introduced by the doping with Cr is substantially equal to the amount of the electron type charge carriers introduced by the doping with Bi.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, CUI-ZU CHANG, XIAO FENG, YAO-YI LI, JIN-FENG JIA
  • Publication number: 20140175382
    Abstract: An electrical device includes an insulating substrate and a magnetically doped TI quantum well film. The insulating substrate includes a first surface and a second surface. The magnetically doped topological insulator quantum well film is located on the first surface of the insulating substrate. A material of the magnetically doped topological insulator quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3, wherein 0<x<1, 0<y<2, and values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi, the magnetically doped topological insulator quantum well film is in 3 QL thickness to 5 QL thickness.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, YA-YU WANG, Li Lv, CUI-ZU CHANG, XIAO FENG
  • Publication number: 20140175373
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0<x<1, 0<y<2. Values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES, TSINGHUA UNIVERSITY
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, CUI-ZU CHANG, XIAO FENG, YAO-YI LI, JIN-FENG JIA
  • Publication number: 20140179026
    Abstract: A method for generating quantum anomalous Hall effect is provided. A topological insulator quantum well film in 3QL to 5QL is formed on an insulating substrate. The topological insulator quantum well film is doped with a first element and a second element to form the magnetically doped topological insulator quantum well film. The doping of the first element and the second element respectively introduce hole type charge carriers and electron type charge carriers in the magnetically doped topological insulator quantum well film, to decrease the carrier density of the magnetically doped topological insulator quantum well film to be smaller than or equal to 1×1013cm?2. One of the first element and the second element magnetically dopes the topological insulator quantum well film. An electric field is applied to the magnetically doped topological insulator quantum well film to decrease the carrier density.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, YA-YU WANG, LI LV, CUI-ZU CHANG, XIAO FENG
  • Publication number: 20130313575
    Abstract: A semi-insulating silicon carbide monocrystal and a method of growing the same are disclosed. The semi-insulating silicon carbide monocrystal comprises intrinsic impurities, deep energy level dopants and intrinsic point defects. The intrinsic impurities are introduced unintentionally during manufacture of the silicon carbide monocrystal, and the deep energy level dopants and the intrinsic point defects are doped or introduced intentionally to compensate for the intrinsic impurities. The intrinsic impurities include shallow energy level donor impurities and shallow energy level acceptor impurities. A sum of a concentration of the deep energy level dopants and a concentration of the intrinsic point defects is greater than a difference between a concentration of the shallow energy level donor impurities and a concentration of the shallow energy level acceptor impurities, and the concentration of the intrinsic point defects is less than the concentration of the deep energy level dopants.
    Type: Application
    Filed: December 6, 2011
    Publication date: November 28, 2013
    Applicant: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiaolong Chen, Chunjun Liu, Tonghua Peng, Longyuan Li, Bo Wang, Gang Wang, Wenjun Wang, Yu Liu
  • Publication number: 20130269598
    Abstract: A technology for growing silicon carbide single crystals by PVT (Physical Vapor Transport) and a technology for in-situ annealing the crystals after growth is finished is provided. The technology can achieve real-time dynamic control of the temperature distribution of growth chamber by regulating the position of the insulation layer on the upper part of the graphite crucible, thus controlling the temperature distribution of growth chamber in real-time during the growth process according to the needs of the technology, which helps to significantly improve the crystal quality and production yield.
    Type: Application
    Filed: November 11, 2011
    Publication date: October 17, 2013
    Applicants: Institute of Physics Chinese Academy of Sciences, Tankeblue Semiconductor Co. Ltd.
    Inventors: Xiaolong Chen, Bo Wang, Longyuan Li, Tonghua Peng, Chunjun Liu, Wenjun Wang, Gang Wang
  • Publication number: 20130200293
    Abstract: The invention discloses a La(Fe,Si)13-based hydride magnetic refrigeration material comprising multiple interstitial atoms and showing a high-temperature stability and a large magnetic entropy change and the method for preparing the same. By reintroducing interstitial hydrogen atoms into an interstitial master alloy La1-aRaFe13-bSibXc through a hydrogen absorption process, a compound with a chemical formula of La1-aRaFe13-bSibXcHd and a cubic NaZn13-type structure is prepared, wherein R is one or a combination of more than one rare-earth element, X is one or more C, B and the like or their combinations. A desired amount of hydrogen is obtained through a single hydrogen absorption process by means of controlling the hydrogen pressure, temperature and period in the process of hydrogen absorption. The compound can be stable under normal pressure, at a temperature of room temperature to 350° C., that is, the hydrogen atoms can still exist stably in the interstices.
    Type: Application
    Filed: December 1, 2010
    Publication date: August 8, 2013
    Applicants: HUBEI QUANYANG MAGNETIC MATERIALS MANUFACTURING CO., LTD., INSTITUTE OF PHYSICS CHINESE ACADEMY OF SCIENCES
    Inventors: Jinliang Zhao, Baogen Shen, Fengxia Hu, Jun Shen, Yangxian Li, Jirong Sun, Huayang Gong, Jianxiong Yin, Xiaohuan Wang
  • Publication number: 20130099780
    Abstract: The invention discloses a magnetic nano-multilayers structure and the method for making it. The multilayer film includes—sequentially from one end to the other end—a substrate, a bottom layer, a magnetic reference layer, a space layer, a magnetic detecting layer and a cap layer. The, up-stated structure is for convert the information of the rotation of the magnetic moment of the magnetic detecting layer into electrical signals. The magnetic detecting layer is of a pinning structure to react to the magnetic field under detection. On the other hand, the invention sandwiches an intervening layer between the AFM and the FM to mitigate the pinning effect from the exchange bias. Moreover, the thickness of the intervening layer is adjustable to control the pinning effect from the exchange bias. The controllability ensures that the magnetic moments of the magnetic reference layer and the magnetic detecting layer remain at right angles to each other when the external field is zero.
    Type: Application
    Filed: March 4, 2011
    Publication date: April 25, 2013
    Applicant: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qinli Ma, Houfang Liu, Xiufeng Han
  • Patent number: 8349154
    Abstract: The invention relates to modified electrodes for ER fluids prepared by adding a rough, wear-resisting, and low conductive modified layer on the surface of metallic electrodes. The material for the modified layer can be at least one from diamond, alumina, titanium dioxide, carborundum, titanium nitride, nylon, polytetrafluoroethylene, adhesive, and adhesive film. Through the addition of the modified layer, the adhesion of the ER fluid to electrodes is increased so that the shear stress measured near the plates is close to the intrinsic value, which makes the ER fluid applicable, while reducing the leakage current and increasing the breakdown voltage of the ER fluid equipment.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: January 8, 2013
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Kunquan Lu, Rong Shen, Xuezhao Wang
  • Patent number: 8236576
    Abstract: A magnetic logic element with toroidal magnetic multilayers (5,6,8,9). The magnetic logic element comprises a toroidal closed section which is fabricated by etching a unit of magnetic multilayers (5,6,8,9) deposited on a substrate. Optionally, the magnetic logic element may also comprise a metal core (10) in the closed toroidal section. Said magnetic multilayers (5,6,8,9) unit is arranged on the input signal lines A, B, C and an output signal line O, and then is made into a closed toroidal. Subsequently, on the toroidal magnetic multilayered unit (5,6,8,9), the input signal lines A?, B?, C? and an output signal line O? are fabricated by etching. This magnetic logic element can reduce the demagnetization field and the shape anisotropy effectively, leading to the decrease of the reversal field of magnetic free layer. Furthermore, this magnetic logic element has stable working performance and long operation life of the device.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: August 7, 2012
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiufeng Han, Zhongming Zeng, Yunan Han, Lixian Jiang, Zilong Peng, Wenshan Zhan
  • Patent number: 8043872
    Abstract: A method of manufacturing epitaxial material used for GaN based LED with low polarization effect, which includes steps of growing n-type InGaAlN layer composed of GaN buffer layer (2) and n-type GaN layer (3), low polarizing active layer composed of InGaAlN multi-quantum well structure polarized regulating and controlling layer (4) and InGaAlN multi-quantum well structure light emitting layer (5) and p-type InGaAlN layer (6) on sapphire or SiC substrate (1) in turn. The method adds InGaAlN multi-quantum well structure polarized regulating and controlling layer, thus reduces polarization effect of quantum well active region.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: October 25, 2011
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Hong Chen, Haiqiang Jia, Liwei Guo, Wenxin Wang, Junming Zhou
  • Patent number: 8016956
    Abstract: The present invention concerns a Ce-base amorphous metallic plastics being CeaAlbMc, in which 55?a?75, 5?b?25, 10?c?25, and a+b+c=100; said M is Co, Cu or Ni. Otherwise the metallic plastics could be CedAleCufZg, in which 55?d?75, 5?e?15, 15?f?25, 0.01?g?10, and d+e+f+g=100; said Z is one element selected from Co, Fe, Hf, Mg, Mo, Nb, Sc, Ta, Ti, W, Zn and Zr. The metallic plastic could also be CehAliCujNik, in which 55?h?75, 5?i?15, 15?j?25, 0.01?k<5, and h+i+j+k=100. The Ce-base amorphous metallic plastic has a low glass-transition temperature and a wide super-cooling liquid phase area, therefore possesses a high thermal stability. The material could be deformed, shaped and imprinting worked into desired amorphous alloy articles as thermoplastic plastics at a very low temperature.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: September 13, 2011
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Bo Zhang, Deqian Zhao, Mingxiang Pan, Weihua Wang
  • Patent number: 7981315
    Abstract: Polar molecules dominated electrorheological fluids mainly comprising a mixture of dispersed phase of solid particles and/or dispersing liquid medium. The dispersed phase solid particles, on the surface, or the liquid dispersing medium contain polar molecules or polar groups, the dipole moment of which is 0.5-10 deb and the size is between 0.1 nm and 0.8 nm. Dispersed phase solid particles are spherical or nearly spherical, of which the size is 10-300 nm and dielectric constant is higher than 50. The conductance rate of the liquid dispersing medium is lower than 10?8 S/m, and the dielectric constant is lower than 10. The PM-ER fluids possess the characteristics of high yield strength, high dynamic shear strength, low leakage current, the linear dependence of yield strength on electric field, and high yield strength at low electric field, etc. The yield strength improves to almost 100 times of that of ordinary ER fluids and reaches to more than 200 Kpa.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: July 19, 2011
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Kunquan Lu, Rong Shen, Xuezhao Wang
  • Patent number: 7936595
    Abstract: Each layer in the magnetic multilayer film is a closed ring or oval ring and the magnetic moment or flux of the ferromagnetic film in the magnetic unit is in close state either clockwise or counterclockwise. A metal core is put in the geometry center position in the close-shaped magnetic multilayer film. The cross section of the metal core is a corresponding circular or oval. A MRAM is made of the closed magnetic multilayer film with or without a metal core. The close-shaped magnetic multilayer film is formed by micro process method. The close-shaped magnetic multilayer film can be used broadly in a great variety of device that uses a magnetic multilayer film as the core, such as MRAM, magnetic bead in computer, magnetic sensitive sensor, magnetic logic device and spin transistor.
    Type: Grant
    Filed: December 31, 2006
    Date of Patent: May 3, 2011
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiufeng Han, Ming Ma, Qihang Qin, Hongxiang Wei, Lixian Jiang, Yunan Han