Abstract: A pain sensory nerve stimulation apparatus includes: an electrode portion including: a first electrode, a tip end of which is adapted to be inserted into a skin; and at lease one second electrode which is disposed in a circumference of the first electrode without being electrically conductive with the first electrode, and which is adapted to be in contact with a skin; and a pulse signal supplier, supplying a pulse signal in which an electrical polarity of the first electrode is set as a anode and an electrical polarity of the second electrode is set as a cathode.
Type:
Application
Filed:
September 30, 2009
Publication date:
April 15, 2010
Applicants:
Inter-University Research Institute Corporation National Institutes of Natural Sciences, NIHON KOHDEN CORPORATION
Inventors:
Koji INUI, Yasuyuki Takeshima, Jun Motogi, Yoshinobu Ono, Takeshi Kojima, Ryosuke Ushijima, Katsumi Nakaichi, Kazuwa Shibuya
Abstract: A laser type ignition device for an internal combustion engine includes a laser oscillator mounted in the internal combustion engine so as to focus its laser beam on an air-fuel mixture supplied into the combustion chamber, a pressure sensor for detecting pressure in the combustion chamber, a power source for the laser oscillator and a control unit for controlling the power source to supply the laser oscillator with the current whose amount changes according to the pressure in the combustion chamber. The power of the laser beam increases as the pressure in the combustion chamber decreases to completely ignite the air-fuel mixture.
Type:
Grant
Filed:
April 28, 2006
Date of Patent:
February 16, 2010
Assignees:
Denso Corporation, Nipoon Soken, Inc., Inter-University Research Institute Corporation National Institutes of Natural Sciences
Abstract: The present invention provides a laser irradiation mass spectrometer capable of analyzing components of living tissue or living cells with high accuracy. It includes a laser unit for irradiating a sample with a beam of laser light and controlling the irradiation spot of the laser beam on the sample; and a mass analyzer for performing a mass analysis of the ions generated at the irradiation spot, where the mass analyzer uses a frequency-driven ion trap and a time-of-flight mass spectrometer to carry out the mass analysis. The ion trap of this system assuredly traps ions having large mass to charge ratios, and enables the system to carry out analyses on samples of large molecules. Preferably, a digital driving method is used to drive the aforementioned frequency-driven ion trap. Also, a multi-turn time-of-flight mass spectrometer may preferably be used as the aforementioned time-of-flight mass spectrometer.
Type:
Grant
Filed:
February 27, 2006
Date of Patent:
March 10, 2009
Assignees:
Shimadzu Corporation, Inter-University Research, Institute Corporation National Institutes of Natural Sciences, Osaka University
Abstract: The present invention provides a laser irradiation mass spectrometer capable of analyzing components of living tissue or living cells with high accuracy. It includes a laser unit for irradiating a sample with a beam of laser light and controlling the irradiation spot of the laser beam on the sample; and a mass analyzer for performing a mass analysis of the ions generated at the irradiation spot, where the mass analyzer uses a frequency-driven ion trap and a time-of-flight mass spectrometer to carry out the mass analysis. The ion trap of this system assuredly traps ions having large mass to charge ratios, and enables the system to carry out analyses on samples of large molecules. Preferably, a digital driving method is used to drive the aforementioned frequency-driven ion trap. Also, a multi-turn time-of-flight mass spectrometer may preferably be used as the aforementioned time-of-flight mass spectrometer.
Type:
Application
Filed:
February 27, 2006
Publication date:
March 1, 2007
Applicants:
SHIMADZU CORPORATION, Inter-University Research Institute Corporation National Institutes of Natural Sciences, Osaka University
Abstract: A laser type ignition device for an internal combustion engine includes a laser oscillator mounted in the internal combustion engine so as to focus its laser beam on an air-fuel mixture supplied into the combustion chamber, a pressure sensor for detecting pressure in the combustion chamber, a power source for the laser oscillator and a control unit for controlling the power source to supply the laser oscillator with the current whose amount changes according to the pressure in the combustion chamber. The power of the laser beam increases as the pressure in the combustion chamber decreases to completely ignite the air-fuel mixture.
Type:
Application
Filed:
April 28, 2006
Publication date:
November 2, 2006
Applicants:
DENSO CORPORATION, NIPPON SOKEN, INC., INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION NATIONAL INSTITUTES OF NATURAL SCIENCES
Abstract: An anhydrous chloride with a formula of MCl2 (M=Fe, Co or Ni) is dissolved into an anhydrous acetonitrile solvent to form a chloride-acetonitrile solution. Then, calcium carbide minute powders are added and dispersed in the chloride-acetonitrile solution at a molar quantity equal to or smaller by 1–30 mol % than the molar quantity of the anhydrous chloride to form a reactive solution. Then, the reactive solution is heated at a predetermined temperature to chemically react the anhydrous chloride with the calcium carbide minute powders in the reactive solution to form a transition metal acetylide compound having an M-C2-M bond, a tetragonal structure, and a formula of MC2 (herein, M=Fe, Co or Ni).
Type:
Grant
Filed:
September 20, 2004
Date of Patent:
April 11, 2006
Assignee:
Inter-University Research Institute Corporation National Institutes of Natural Sciences
Abstract: An anhydrous chloride with a formula of MCl2 (M?Fe, Co or Ni) is dissolved into an anhydrous acetonitrile solvent to form a chloride-acetonitrile solution. Then, calcium carbide minute powders are added and dispersed in the chloride-acetonitrile solution at a molar quantity equal to or smaller by 1-30 mol % than the molar quantity of the anhydrous chloride to form a reactive solution. Then, the reactive solution is heated at a predetermined temperature to chemically react the anhydrous chloride with the calcium carbide minute powders in the reactive solution to form a transition metal acetylide compound having an M—C2—M bond, a tetragonal structure, and a formula of MC2 (herein, M?Fe, Co or Ni).
Type:
Application
Filed:
September 20, 2004
Publication date:
August 4, 2005
Applicant:
INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION NATIONAL INSTITUTES OF NATURAL SCIENCE
Abstract: An anhydrous chloride with a formula of MCl2 (M=Fe, Co or Ni) is dissolved into an anhydrous acetonitrile solvent to form a chloride-acetonitrile solution. Then, calcium carbide minute powders are added and dispersed in the chloride-acetonitrile solution to form a reactive solution. Then, the reactive solution is thermally treated (first thermal treatment) to form a nano-powder made of a transition metal acetylide compound having an M-C2-M bond, a tetragonal structure, and a formula of MC2 (herein, M=Fe, Co or Ni). Then, the nano-powder is thermally treated (second thermal treatment) again at a temperature higher than the temperature in the first thermal treatment to form a carbon layer-covering transition metallic nano-structure wherein a metallic core made of the transition metal M is covered with a carbon layer.
Type:
Application
Filed:
September 20, 2004
Publication date:
August 4, 2005
Applicant:
Inter-University Research Institute Corporation National Institutes of Natural Sciences