Abstract: Provided is a method of automatically setting, in a recipe, a process parameter (PP) according to the number of substrates to be processed. The method includes (a) displaying a process parameter of a process recipe on a display unit; (b) displaying a parameter name in a process parameter file on the display unit; (c) generating a first recipe by substituting the process parameter with the parameter name; (d) downloading the first recipe and one of a plurality of condition tables corresponding to the selected number of substrates when the number of substrates to be processed in a processing chamber is selected; and (e) generating a second recipe by substituting the process parameter of the downloaded one of the condition tables for the parameter name in the downloaded first recipe.
Abstract: There is provided a method of manufacturing a semiconductor device, including pre-treating a surface of an insulating film formed on a substrate by supplying a precursor containing a first element and a halogen element to the substrate; and forming a film containing the first element and a second element on the pre-treated surface of the insulating film by performing a cycle a predetermined number of times, the cycle including supplying the precursor to the substrate; and supplying a reactant containing the second element to the substrate, wherein the act of supplying the precursor and the act of supplying the reactant are performed non-simultaneously.
Abstract: A method of manufacturing a semiconductor device may include: performing a cycle a predetermined number of times to form an oxynitride film on a substrate, the cycle including: (a) supplying a source gas to the substrate via a first nozzle; and (b) supplying a nitriding gas and an oxidizing gas to the substrate via a second nozzle different from the first nozzle, wherein (a) and (b) are performed non-simultaneously, wherein (b) may include: (b-1) supplying only the oxidizing gas while suspending a supply of the nitriding gas; and (b-2) simultaneously supplying the nitriding gas and the oxidizing gas, wherein (b-1) and (b-2) are consecutively performed.
Abstract: A method of manufacturing a semiconductor device includes: providing a substrate having an oxide film; performing, a predetermined number of times, a cycle of non-simultaneously performing supplying a precursor gas to the substrate, supplying a carbon-containing gas to the substrate, and supplying a nitrogen-containing gas to the substrate, or performing, a predetermined number of times, a cycle of non-simultaneously performing supplying a precursor gas to the substrate and supplying a gas containing carbon and nitrogen to the substrate, or performing, a predetermined number of times, a cycle of non-simultaneously performing supplying a precursor gas containing carbon to the substrate and supplying a nitrogen-containing gas to the substrate, the oxide film being used as an oxygen source to form a nitride layer containing oxygen and carbon as a seed layer; and forming a nitride film containing no oxygen and carbon as a first film on the seed layer.
Abstract: A method of manufacturing a semiconductor device includes carrying a substrate into a process container, forming a thin film on the substrate by supplying a source gas into the process container with the substrate accommodated therein, performing a first modification treatment to a byproduct adhered to an inside of the process container by supplying an oxygen-containing gas and a hydrogen-containing gas into the heated process container under a pressure less than an atmospheric pressure, while accommodating the thin film-formed substrate in the process container, carrying the thin film-formed substrate out of the process container, and performing a second modification treatment to the byproduct adhered to the inside of the process container after the first modification treatment by supplying an oxygen-containing gas and a hydrogen-containing gas into the heated process container under the pressure less than the atmospheric pressure, while not accommodating the substrate in the process container.
Abstract: When a dry cleaning process is performed in a processing chamber by adding nitrogen monoxide (NO) gas to a cleaning gas, the handling is facilitated, and cleaning performance is improved. A substrate processing apparatus includes a processing vessel configured to process a substrate, a first cleaning gas supply system configured to pre-mix a gas containing fluorine atoms with the NO gas and supply the pre-mixed gas into the processing vessel, and a second cleaning gas supply system installed apart from the first cleaning gas supply system and configured to supply the fluorine-containing gas into the processing vessel.
Abstract: The technique described herein can form a semiconductor device having a favorable characteristic over a flash memory with a 3D structure. Provided is a method of manufacturing a semiconductor device, including: (a) forming a stacked structure having an insulating film and a sacrificial film stacked therein by performing a combination a plurality of times, the combination including: (a-1) forming the insulating film on a substrate; (a-2) forming the sacrificial film on the insulating film; and (a-3) modifying at least one of the insulating film and the sacrificial film to reduce a difference between stresses of the insulating film and the sacrificial film.
Abstract: There is provided a method of manufacturing a semiconductor device, including forming a film on a substrate by performing a cycle a predetermined number of times, the cycle including non-simultaneously performing supplying a precursor gas to the substrate; and supplying a first oxygen-containing gas to the substrate. Further, the act of supplying the precursor gas includes a time period in which the precursor gas and a second oxygen-containing gas are simultaneously supplied to the substrate.
Abstract: A wireless sensor network system includes: sensor terminals and a management terminal. A sensor terminal sends a join request at a first transmission power; and the management terminal calculates the traffic load of nodes on the reception path of the join request. If the number of hops and the traffic load are both within respective permissible ranges, the management terminal sets the reception path as the communication route of the sensor terminal. If the number of hops and/or the load is not within the permissible rage, the management terminal reconstructs the communication path by outputting an instruction to the sensor terminal to make direct connection to the management terminal or a specified node with a low traffic load, at a second transmission power greater than the first transmission power. When receiving the instruction, the sensor terminal transmits to the management terminal or the specified node at the second transmission power.
Abstract: A substrate processing apparatus includes a substrate support part provided with a first heating part, configured to heat a substrate, a gas supply part installed above the substrate support part and configured to supply a process gas to the substrate, a first exhaust port configured to exhaust an atmosphere of a process space existing above the substrate support part, a gas distribution part installed to face the substrate support part, a lid part provided with a second exhaust port configured to exhaust a buffer space existing between the gas supply part, and the gas distribution part, a rectifying part installed within the buffer space and provided with a second heating part at least partially facing the second exhaust port, the rectifying part configured to rectify the process gas, and a control part configured to control the second heating part.
Abstract: An examination device implements examination of matter to a large object without moving the device as a whole. The intensity of Raman scattering light obtained by laser irradiation of the object to be examined is detected to detect an attached state of an attached matter on the object to be examined. Based on a laser light irradiation position imaged and a visible image captured by a camera, the laser light irradiation position and a pixel of the camera are associated with each other, whereby irradiation area information is generated. Based on the attached state of the attached matter and the irradiation area information, an image of the attached matter present in an area imaged by the pixel of the camera is generated, and the visible image captured by the camera and the image of the attached matter are synthesized to generate a synthesized image.
Abstract: SISO decoding of a reception signal having a scrambled symbol arrangement is realized using a process having reduced complexity. Coordinates are generated for a reference point obtained by scrambling and mapping a symbol number not a symbol reference point position. This reference point simulates transmission-side scrambling and is generated for each symbol number by a first mapping unit. Because the binary expression of a corresponding original signal number is retained, a bit likelihood calculation unit can easily calculate a bit likelihood based on the distance between the reference point and a reception signal. The calculated bit likelihood is then deinterleaved and subjected to SISO error-correcting decoding. The thus obtained bit likelihood is then reinterleaved and used to calculate a symbol probability. Soft symbols are generated through the multiplication of all the calculated symbol probabilities by corresponding reference points output by a second mapping unit similar to the first mapping unit.
Abstract: A method of manufacturing a semiconductor device includes: forming a base film containing a first element and carbon on a substrate by supplying a film forming gas to the substrate; and oxidizing the base film by supplying an oxidizing gas to the substrate to modify the base film into a C-free oxide film containing the first element.
Abstract: There is provided a technique including: (a) forming a thin film containing a predetermined element, oxygen and carbon on a substrate by performing a cycle a predetermined number of times, the cycle including: (a-1) supplying a source gas containing the predetermined element, carbon and a halogen element having a chemical bond between the predetermined element and carbon to the substrate; (a-2) supplying an oxidizing gas to the substrate; and (a-3) supplying a catalytic gas to the substrate; (b) removing a first impurity from the thin film by thermally processing the thin film at a first temperature higher than a temperature of the substrate in (a); and (c) removing a second impurity different from the first impurity from the thin film by thermally processing the thin film at a second temperature equal to or higher than the first temperature after performing (b).
Abstract: A method of manufacturing a semiconductor device includes forming a first insulating film as a portion of a laminated insulating film on a substrate in which a plurality of circuit configurations is formed; polishing the first insulating film; measuring a film thickness distribution of the first insulating film; and forming a second insulating film as a portion of the laminated insulating film on the polished first insulating film at a film thickness distribution differing from the film thickness distribution of the first insulating film to correct a film thickness of the laminated insulating film.