Patents Assigned to Kumamoto University
  • Patent number: 9587224
    Abstract: It is an object of the present invention to provide a method for producing pluripotent cells that are free of the risk of cellular canceration and that can be applied to regenerative medicine with a high degree of safety. The present invention provides a method for producing pluripotent cells from somatic cells comprising a step of bringing bacteria having fermentation ability or a component or secretory product thereof into contact with somatic cells.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: March 7, 2017
    Assignee: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventor: Kunimasa Ohta
  • Patent number: 9583231
    Abstract: Provided is a carbon nanotube composite electrode having carbon nanotubes which are firmly fixed to an electrode substrate so as to utilize the characteristics of the carbon nanotubes, and having the intrinsic electrode characteristics of carbon nanotubes. The carbon nanotube composite electrode has a surface layer containing a porous oxide material and carbon nanotubes on the surface of the electrode substrate, wherein the carbon nanotubes are generated from the porous oxide material, and at least some of the carbon nanotubes are electrically connected to the electrode substrate. The carbon nanotube composite electrode is firmly fixed to the electrode substrate, and has the intrinsic electrode characteristics of carbon nanotubes, and thus may preferably be used in applications for electrodes and the like in various electronic devices such as electrochemical sensors and batteries.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: February 28, 2017
    Assignee: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Masato Tominaga, Shingo Sakamoto, Yuichi Fukamichi, Ayako Iwaoka, Terutaka Hashiguchi, Makoto Togami, Noriaki Watanabe
  • Patent number: 9562277
    Abstract: The present invention provides a magnesium alloy material, having superior mechanical properties without using special production equipment or processes, and a production process thereof. The magnesium alloy material of the present invention composed of an Mg—Zn—RE alloy comprises essential components in the form of 0.5 to 3 atomic percent of Zn and 1 to 5 atomic percent of RE, with the remainder comprising Mg and unavoidable impurities. The Mg—Zn—RE alloy has a lamellar phase formed from a long period stacking ordered structure and ?-Mg in the alloy structure thereof. The long period stacking ordered structure has at least one of a curved portion and a bent portion and has a divided portion in at least a portion thereof. Finely granulated ?-Mg having a mean particle diameter of 2 ?m or less is formed in the divided portion.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: February 7, 2017
    Assignees: Kobe Steel, Ltd., NISSAN MOTOR CO., LTD., NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Mamoru Nakata, Yuuichi Yamada, Koji Itakura, Yoshio Okada, Yoshihito Kawamura, Michiaki Yamasaki
  • Publication number: 20170021332
    Abstract: A means for selectively removing ET under coexistence of a substance showing a negative charge, such as nucleic acid is described. Endotoxin is selectively removed by bringing a polymer obtained by crosslinking cyclodextrin with an isocyanate-based crosslinking agent in contact with a solution containing endotoxin and the substance showing the negative charge such as nucleic acid.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Applicants: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY, JNC CORPORATION
    Inventors: MASAYO SAKATA, MASAMI TODOKORO
  • Publication number: 20160369378
    Abstract: A magnesium alloy having high strength and high ductility and in which at least one of corrosion resistance and flame resistance is enhanced, or a method of manufacturing the same. The magnesium alloy contains an atomic % of Ca and b atomic % of Al, totally contains k atomic % of at least one element selected from a group consisting of Mn, Zr, Ag, Y and Nd, has a composition in which a remaining part is formed of Mg and contains c volume % of (Mg, Al)2Ca, a, b, c and k satisfying formulae (1) to (4) and (21) below. The (Mg, Al)2Ca is dispersed and the at least one element is an element that enhances at least one of corrosion resistance and flame resistance: (1) 3?a?7, (2) 4.5?b?12, (3) 1.2?b/a?3.0, (4) 10?c?35, (21) 0<k?0.3.
    Type: Application
    Filed: October 22, 2014
    Publication date: December 22, 2016
    Applicant: National University Corporation Kumamoto University
    Inventors: Yoshihito KAWAMURA, Michiaki YAMASAKI
  • Patent number: 9523674
    Abstract: The object of the present invention is to provide a method for screening a substance capable of promoting induction of induced pluripotent stem cells from cells derived from an individual affected by a disease for which it is impossible to produce induced pluripotent stem cells simply by introducing reprogramming genes. The present invention provides a method for screening a substance, which comprises culturing cells derived from an individual affected by a disease for which it is impossible to produce induced pluripotent stem cells simply by introducing reprogramming genes, the cells being transfected with reprogramming genes, in the presence of test substances, and selecting a test substance capable of promoting induction of induced pluripotent stem cells from the cells.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: December 20, 2016
    Assignee: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventor: Takumi Era
  • Patent number: 9505850
    Abstract: A means for selectively removing ET under coexistence of a substance showing a negative charge, such as nucleic acid is described. Endotoxin is selectively removed by bringing a polymer obtained by crosslinking cyclodextrin with an isocyanate-based crosslinking agent in contact with a solution containing endotoxin and the substance showing the negative charge such as nucleic acid.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: November 29, 2016
    Assignees: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY, JNC CORPORATION
    Inventors: Masayo Sakata, Masami Todokoro
  • Patent number: 9487541
    Abstract: Tricylic ether carbamates that inhibit HIV proteolytic enzymes and processes for preparing the compounds are describes. Methods of using the disclosed compounds for treating patients infected with HIV are also described.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: November 8, 2016
    Assignees: Purdue Research Foundation, National University Corporation Kumamoto University
    Inventors: Arun K. Ghosh, Chun-Xiao Xu, Hiroaki Mitsuya, Garth Parham
  • Patent number: 9458295
    Abstract: A composite material in which a graphene-like carbon material has excellent adhesion to a substrate composed of resin, and a method for producing the same are provided. The composite material comprises a substrate composed of resin and a graphene-like carbon material layer provided so as to cover at least part of the surface of the substrate, wherein graphene-like carbon is closely attached to the surface of the substrate. The method for producing a composite material comprises bringing a graphene-like carbon material into contact with at least part of the surface of a substrate composed of resin and heating under the action of a supercritical or subcritical fluid.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: October 4, 2016
    Assignees: SEKISUI CHEMICAL CO., LTD., NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Shoji Nozato, Akira Nakasuga, Hirotaka Ihara, Hullathy Subban Ganapathy, Makoto Takafuji
  • Patent number: 9453242
    Abstract: Provided are a method for preparing a mammalian ovum or embryo in which zona pellucida has been thinned or eliminated, and a method for fertilization using the mammalian ovum prepared by the aforementioned method. The method for thinning or eliminating zona pellucida of a mammalian ovum or embryo involves treating or culturing the mammalian ovum or embryo (such as an unfertilized ovum, a fertilized ovum, or an embryo in the early stages of development) in a culture medium containing a reducing agent having SH groups (such as reduced glutathione or DTT). The resulting mammalian ovum or embryo (such as an unfertilized ovum, a fertilized ovum, or an embryo in the early stages of development) in which zona pellucida has been thinned or eliminated is capable of realizing an improved fertilization rate and development rate when used for in vitro fertilization, transplantation of a fertilized ovum, or preparation of an embryo in the early stages of development used in the production of a genetically modified animal.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: September 27, 2016
    Assignee: NATIONAL UNIVERISTY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Naomi Nakagata, Toru Takeo
  • Patent number: 9394535
    Abstract: Disclosed is a liquid culture medium for substance introduction, which is capable of increasing the survival rate of cells after substance introduction as much as possible when the cells are irradiated with plasma for the purpose of introducing a target substance into each of the cells. Specifically disclosed is a liquid culture medium for substance introduction, which is used for the purpose of introducing a predetermined target substance into a cell and enables introduction of the target substance into the cell by having the cell in the liquid culture medium, which contains the target substance, irradiated with a plasma jet. The liquid culture medium contains a damage preventing component that prevents the cell from damage due to the plasma jet.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 19, 2016
    Assignee: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Douyan Wang, Daisuke Seki, Tako Namihira, Hisato Saito, Hidenori Akiyama
  • Patent number: 9376665
    Abstract: An object of the present invention is to provide a method of producing intestinal cells by use of pluripotent stem cells as a starting material. According to the present invention, provided is a method of producing intestinal cells, comprising the steps of: (A) inducing differentiation of pluripotent stem cells into definitive endoderm cells; and (B) culturing the definitive endoderm cells in the presence of (2?Z,3?E)-6-bromoindirubin-3?-oxime (BIO) and N-[(3,5-difluorophenyl)acetyl]-L-Ala-2-phenyl-L-Gly-tert-butyl-OH (DAPT) to thereby induce differentiation of the definitive endoderm cells into intestinal cells.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: June 28, 2016
    Assignees: National University Corporation Kumamoto University, LSIP, LLC
    Inventors: Shoen Kume, Soichiro Ogaki, Nobuaki Shiraki, Kazuhiko Kume
  • Publication number: 20160168666
    Abstract: A method of manufacturing a flame-retardant magnesium alloy having mechanical properties of a long period stacking ordered magnesium alloy and having an ignition temperature of 800° C. or more is provided. In the method of manufacturing a flame-retardant magnesium alloy, a flame-retardant magnesium alloy which contains a atomic % of Zn, b atomic % of at least one element selected from a group consisting of Gd, Tb, Tm and Lu, and x atomic % of Ca and in which a remaining part is formed of Mg and a, b and x satisfy Formulae 1 to 4 below is melted. 0.2?a?5.0??(Formula 1) 0.5?b?5.0??(Formula 2) 0.5a?0.5?b??(Formula 3) 0<x?0.
    Type: Application
    Filed: April 14, 2014
    Publication date: June 16, 2016
    Applicant: National University Corporation Kumamoto University
    Inventors: Yoshihito KAWAMURA, Jonghyun KIM
  • Patent number: 9330457
    Abstract: An image analysis device for analyzing a magnetic resonance image obtained from a living body includes a phase difference distribution creating unit configured to create a phase difference distribution of a magnetic resonance image obtained from a predetermined area of the living body, a fitting unit configured to fit the phase difference distribution created by the phase difference distribution creating unit with a plurality of function groups, and a verifying unit configured to verify normality of the living body included in the predetermined area, based on the magnetic susceptibility of the tissue included in the predetermined area determined on the basis of the parameters of the plurality of function groups fit to the phase difference distribution by the fitting unit.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: May 3, 2016
    Assignee: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventor: Tetsuya Yoneda
  • Patent number: 9302917
    Abstract: The object of the present invention is to provide a method of producing low valence titanium oxides in a steady supply manner acceptable in industrial production. The low valence titanium oxides are produced by electrical discharge between two electrodes in an aqueous medium, wherein at least one of the electrodes is a titanium-containing electrode.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: April 5, 2016
    Assignees: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY, KURARAY CO., LTD.
    Inventors: Tsutomu Mashimo, Omurzak Uulu Emil, Naoto Kameyama, Makoto Okamoto, Yoshiaki Yasuda, Hideharu Iwasaki
  • Publication number: 20160083856
    Abstract: An electrolytic treatment method in which a predetermined treatment is performed using treatment subject ions contained in a treatment liquid, the method including: an electrode positioning step for positioning a direct electrode and a counter electrode so as to sandwich the treatment liquid, and positioning an indirect electrode for forming an electric field in the treatment liquid; a treatment subject ion migration step for applying a voltage to the indirect electrode and thereby moving the treatment subject ions in the treatment liquid to the counter electrode side; and a treatment subject ion redox step for applying a voltage between the direct electrode and the counter electrode and thereby oxidizing or reducing the treatment subject ions which have migrated to the counter electrode side.
    Type: Application
    Filed: May 12, 2014
    Publication date: March 24, 2016
    Applicants: TOKYO ELECTRON LIMITED, National University Corporation Kumamoto University
    Inventors: Haruo IWATSU, Hidenori AKIYAMA
  • Patent number: 9293232
    Abstract: A composite conductor 10, including an internal layer 11 having a conductive material A, the conductive material A having fatigue strength of at least 150 MPa after being subjected to 106 cycles of cyclic loading in a fatigue test, and an external layer 12 having a conductive material B, the external layer coating the internal layer 11, the conductive material B having tensile strength higher than that of the conductive material A, the tensile strength being at least 250 MPa, in which the composite conductor 10 has fracture resistance to a sudden load and impact as well as bending durability.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 22, 2016
    Assignees: DYDEN CORPORATION, FUKUOKA PREFECTURAL GOVERNMENT, NAT'L UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Hiroyuki In, Fumiyo Annou, Daisuke Matsunaga, Hiromoto Kitahara, Shinji Ando, Masayuki Tsushida, Toshifumi Ogawa
  • Patent number: 9284417
    Abstract: A composite material in which a graphene-like carbon material has excellent adhesion to a substrate composed of resin, and a method for producing the same are provided. The composite material comprises a substrate composed of resin and a graphene-like carbon material layer provided so as to cover at least part of the surface of the substrate, wherein graphene-like carbon is closely attached to the surface of the substrate. The method for producing a composite material comprises bringing a graphene-like carbon material into contact with at least part of the surface of a substrate composed of resin and heating under the action of a supercritical or subcritical fluid.
    Type: Grant
    Filed: May 28, 2012
    Date of Patent: March 15, 2016
    Assignees: SEKISUI CHEMICAL CO., LTD., NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Shoji Nozato, Akira Nakasuga, Hirotaka Ihara, Hullathy Subban Ganapathy, Makoto Takafuji
  • Publication number: 20160068933
    Abstract: A method of manufacturing a flame-retardant magnesium alloy having mechanical properties of a long period stacking ordered magnesium alloy and having an ignition temperature of 800° C. or more is provided. The method of manufacturing a flame-retardant magnesium alloy comprises a step of melting a flame-retardant magnesium alloy which contains a atomic % of Zn, b atomic % of Y, x atomic % of Ca and a residue of Mg, and a, b and x satisfy formulae 1 to 4 below. 0.5?a<5.0??(Formula 1) 0.5<b<5.0??(Formula 2) ?a???b??(Formula 3) 0<x?0.
    Type: Application
    Filed: April 14, 2014
    Publication date: March 10, 2016
    Applicant: National University Corporation Kumamoto University
    Inventors: Yoshihito KAWAMURA, Jonghyun KIM
  • Patent number: 9190047
    Abstract: An acoustic signal processing device includes a frequency domain transform unit configured to transform an acoustic signal to a frequency domain signal for each channel, a filter coefficient calculation unit configured to calculate at least two sets of filter coefficients of a filter for each section having a predefined number of frames with respect to a sampled signal obtained by sampling the frequency domain signal transformed by the frequency domain transform unit for each frame such that the magnitude of a residual calculated based on a filter compensating for the difference in transfer characteristics between the channels of the acoustic signal is minimized, and an output signal calculation unit configured to calculate an output signal of a frequency domain based on the frequency domain signal transformed by the frequency domain transform unit and at least two sets of filter coefficients calculated by the filter coefficient calculation unit.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: November 17, 2015
    Assignees: HONDA MOTOR CO., LTD., KUMAMOTO UNIVERSITY
    Inventors: Kazuhiro Nakadai, Makoto Kumon, Yasuaki Oda