Abstract: The present technology relates to a reception apparatus, a transmission apparatus, and a data processing method that enable a frequency scan to be performed at a higher speed. The reception apparatus can receive a broadcast wave, perform the frequency scan on the broadcast wave on the basis of the number of providers information indicating the number of broadcasting providers providing a service in the same frequency band, and generate channel selection information for selecting the service, thereby enabling the frequency scan at a higher speed. The present technology is applicable to, for example, a receiver capable of receiving digital broadcasting.
Abstract: A voltage-glitch detection and protection circuit and method are provided. Generally, circuit includes a voltage-glitch-detection-block (GDB) and a system-reset-block coupled to the GDB to generate a reset-signal to cause devices in a chip including the circuit to be reset when a voltage-glitch in a supply voltage (VDD) is detected. The GDB includes a voltage-glitch-detector coupled to a latch. The voltage-glitch-detector detects the voltage-glitch and generates a PULSE to the system-reset-block and latch. The latch receives the PULSE and generates a PULSE_LATCHED signal to the system-reset-block to ensure the reset-signal is generated no matter a width of the PULSE. In one embodiment, the latch includes a filter and a sample and hold circuit to power the latch, and ensure the PULSE_LATCHED signal is coupled to the system-reset-block when a voltage to the GDB or to the latch drops below a minimum voltage due to the voltage-glitch.
Abstract: A method and apparatus for video encoding/decoding are provided. In some examples, an apparatus includes processing circuitry for video decoding. The processing circuitry decodes prediction information of a block in a current picture from a coded video bitstream. The prediction information is indicative of an affine model in an intra block copy mode. The processing circuitry determines parameters for the affine model that transforms between the block and a reference block in a region of the current picture that has been reconstructed. Then, the processing circuitry reconstructs at least a sample of the block based on the affine model.
Abstract: Aspects of the present disclosure involve systems and methods for a collaboration conferencing system to track a total number of concurrently utilized ports across any number of conferencing bridges of the network for a particular customer and one or more billing actions may occur based on this tracking. This may result in an alternate billing option for the customer's use of the system. Further, a telecommunications network administrator may provide access to the collaboration conferencing system based on a total number of concurrently utilized ports rather than on a per conference or per minute basis. With the information of the number of purchased ports by the customer, the administrator may more accurately predict an available capacity for the collaboration conferencing system needed to support all of the users of the system and the potential collaboration conferences.
Type:
Application
Filed:
September 27, 2021
Publication date:
January 13, 2022
Applicant:
Level 3 Communications, LLC
Inventors:
Andrew J. Broadworth, Robert F. Nance, Gregory T. Ellison
Abstract: A modular and dynamic force apparatus for adjusting standard and dynamic torque-to-linear forces during physical activity in real-time, the apparatus including a force module, a user device and an apparatus tracking processing unit. The force module includes an open hub attachment point, wherein the open hub attaches the apparatus to an external source, one or more sensors measuring data for physical activity efficiency, an internal processor, wireless radio and force sensor module, a variable length cable, a force generating component, and motor controls. The internal processor, wireless radio and force sensor module includes an apparatus tracking measurement unit (“ATMU”) adapted to measure data, a first electronic communications channel for transmitting the measured data to an apparatus tracking processing unit (“ATPU”), and a second electronic communications channel for transmitting one or more apparatus conditions data to adjust dynamic forces.
Type:
Application
Filed:
September 27, 2021
Publication date:
January 13, 2022
Applicant:
Dynamic Accession LLC
Inventors:
Shawn A. Hendricks, Christopher M. Toner
Abstract: The invention herein disclosed is a system that supports sampling, testing and filtering of air in selected small volumes of air within a larger air pool.
Abstract: Methods, systems and apparatuses, including computer programs encoded on computer storage media, are provided herein for an interactive, educational cooking experience. The embodiments may display a cooking interface that includes various ingredients, kitchen appliances, cookware, and kitchen utensils that may be manipulated by a user. A number of instructions relating to one or more steps of a selected recipe may also be displayed via the cooking interface, such that the user may attempt to follow the instructions by interacting with the displayed items. The embodiments may determine whether such interactions are in accordance with the instructions and may display relevant feedback to the user.
Abstract: A computing device is described for performing local interference avoidance, when supporting concurrent voice and data transmissions, and with access to multiple radios. The computing device predicts when coexistence issues will occur from maintaining independent voice and data transmissions using separate radios. To avoid local interference issues, the computing device automatically switches to operating a different combination of radios, making local interference less likely to occur. In some cases, the computing device may consolidate the voice and non-voice data exchanges to occur using a single radio. In some cases, rather than consolidation, the computing device may move the voice or the non-voice data exchange to a different radio as a way to avoid the local interference.
Type:
Application
Filed:
May 16, 2019
Publication date:
January 13, 2022
Applicant:
Google LLC
Inventors:
Jibing Wang, Erik Richard Stauffer, Nicholas M. McDonnell, Sathish Karunakaran