Patents Assigned to Lummus Technology LLC
  • Patent number: 11401475
    Abstract: A reactor system configured for efficiently removing contaminants (CCR, nickel, vanadium, nitrogen, sodium, iron, calcium, chlorine etc.) from a heavy portion of the crude oil. The products are routed to a common main fractionation section. The heavy feed with lower contaminants may then be processed in a fluid catalytic cracking (FCC) unit, the overall concept employing a fluid catalytic reaction platform with carbon rejection approach. Also disclosed is a reactor system for efficiently processing crude oil in a fluid catalytic cracking unit with a dual-reactor and dual catalyst system to maximize petrochemical building blocks such as ethylene, propylene, butylenes, BTX (benzene, toluene and xylene) rich naphtha from a variety of crude oils.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: August 2, 2022
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Rama Rao Marri, Justin Breckenridge, Liang Chen, Manoj Som
  • Patent number: 11390817
    Abstract: Processes herein may be used to thermally crack various hydrocarbon feeds, and may eliminate the refinery altogether while making the crude to chemicals process very flexible in terms of crude. In embodiments herein, crude is progressively separated into at least light and heavy fractions. Depending on the quality of the light and heavy fractions, these are routed to one of three upgrading operations, including a fixed bed hydroconversion unit, a fluidized catalytic conversion unit, or a residue hydrocracking unit that may utilize an ebullated bed reactor. Products from the upgrading operations may be used as feed to a steam cracker.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: July 19, 2022
    Assignees: LUMMUS TECHNOLOGY LLC, Saudi Aramco Technologies Company, Chevron Lummus Global LLC
    Inventors: Kareemuddin Shaik, Ujjal Mukherjee, Essam Abdullah Al-Sayed, Pedro Santos, Theodorus Maesen, Mazin Tamimi, Julie Chabot, Ibrahim Abba, Kandasamy Sundaram, Sami Barnawi, Ronald Venner
  • Patent number: 11377602
    Abstract: Processes and systems for the conversion of hydrocarbons herein may include separating an effluent from a moving bed reactor, the effluent including reaction product, first particulate catalyst, and second particulate catalyst. The separating may recover a first stream including the reaction product and first particulate catalyst and a second stream including second particulate catalyst. The second stream may be admixed with a regenerated catalyst stream including both first and second particulate catalyst at an elevated temperature. The admixing may produce a mixed catalyst at a relatively uniform temperature less than the elevated regenerated catalyst temperature, where the temperature is more advantageous for contacting light naphtha and heavy naphtha within the moving bed reactor to produce the effluent including the reaction product, the first particulate catalyst, and the second particulate catalyst.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: July 5, 2022
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Bryan Tomsula, Liang Chen, Peter Loezos, Rama Rao Marri
  • Publication number: 20220204870
    Abstract: Processes and systems for producing raw materials and for producing truly circular polymers. The systems and processes may include processing a waste-derived hydrocarbon stream, such as a waste plastic pyrolysis oil, in a first reactor system with a catalyst mixture, and processing a fossil-based feedstock in a second reactor system with the catalyst mixture. The catalyst mixture may be supplied to each of the first and second reactor systems from a common catalyst regenerator. An effluent comprising fossil-based hydrocarbon products may be recovered from the second reactor system, and an effluent comprising waste-derived hydrocarbon products may be recovered from the first reactor system. Following separations, spent catalyst from each of the first and second reactor systems may be returned to the common catalyst regenerator.
    Type: Application
    Filed: October 6, 2021
    Publication date: June 30, 2022
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventors: Joaquim Antonio de Oliveira Portela, Rama Rao Marri, Willibrord A. Groten
  • Patent number: 11370979
    Abstract: Apparatus and processes herein provide for converting hydrocarbon feeds to light olefins and other hydrocarbons. The processes and apparatus include, in some embodiments, feeding a hydrocarbon, a first catalyst and a second catalyst to a reactor, wherein the first catalyst has a smaller average particle size and is less dense than the second catalyst. A first portion of the second catalyst may be recovered as a bottoms product from the reactor, and a cracked hydrocarbon effluent, a second portion of the second catalyst, and the first catalyst may be recovered as an overhead product from the reactor. The second portion of the second catalyst may be separated from the overhead product, providing a first stream comprising the first catalyst and the hydrocarbon effluent and a second stream comprising the separated second catalyst, allowing return of the separated second catalyst in the second stream to the reactor.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: June 28, 2022
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Liang Chen, Peter Loezos, Rama Rao Marri, Bryan Tomsula, Jon A. Hood, Hardik Singh, Michael Dorsey, Justin Breckenridge
  • Patent number: 11370724
    Abstract: Catalytic forms and formulations are provided. The catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 28, 2022
    Assignee: Lummus Technology LLC
    Inventors: Joel M. Cizeron, Fabio R. Zurcher, Jarod McCormick, Joel Gamoras, Roger Vogel, Joel David Vincent, Greg Nyce, Wayne P. Schammel, Erik C. Scher, Daniel Rosenberg, Erik-Jan Ras, Erik Freer
  • Patent number: 11365361
    Abstract: Processes herein may be used to thermally crack various hydrocarbon feeds, and may eliminate the refinery altogether while making the crude to chemicals process very flexible in terms of crude. In embodiments herein, crude is progressively separated into at least light and heavy fractions. Depending on the quality of the light and heavy fractions, these are routed to one of three upgrading operations, including a fixed bed hydroconversion unit, a fluidized catalytic conversion unit, or a residue hydrocracking unit that may utilize an ebullated bed reactor. Products from the upgrading operations may be used as feed to a steam cracker.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: June 21, 2022
    Assignees: LUMMUS TECHNOLOGY LLC, Saudi Aramco Technologies Company, Chevron Lummus Global LLC
    Inventors: Ujjal Mukherjee, Essam Abdullah Al-Sayed, Pedro Santos, Kareemuddin Shaik, Theodorus Maesen, Mazin Tamimi, Julie Chabot, Ibrahim Abba, Kandasamy Sundaram, Sami Barnawi, Ronald Venner, Abdul Rahman Zafer Akhras
  • Publication number: 20220127208
    Abstract: A process for the selective dimerization and etherification of isoolefins. The process including feeding a mixed C5 stream to a selective hydrogenation unit to convert dienes to olefins and isoolefins, producing a hydrogenated effluent stream. The hydrogenated effluent stream is fed to a first fixed bed reactor, producing a first reactor effluent. The first reactor effluent is fed to a catalytic distillation reactor system, producing a first overheads including unreacted olefins, isoolefins, oxygenate, and one or more C5 ethers and a first bottoms including dimers of the isoolefins, any produced trimers of the isoolefins, and heavy oxygenates. The first overheads is fed to a second fixed bed reactor, producing a second reactor effluent including dimers of the isoolefins, unreacted C5s, and unreacted oxygenates.
    Type: Application
    Filed: October 28, 2021
    Publication date: April 28, 2022
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventors: Rosette Barias, Michael Jon Scott, Liang Chen
  • Patent number: 11312671
    Abstract: The selective dimerization of isoolefins, such as isobutene or isopentane, or mixtures thereof, may be conducted in a system including a series of fixed bed reactors and a catalytic distillation reactor. The system may provide for conveyance of the fixed bed reactor effluents, without componential separation, to a downstream reactor. It has been found that a high selectivity to the dimer may be achieved even though intermediate separation of the desired product from unreacted components between reactors is not performed. Further, embodiments provide for use of a divided wall column for recovery of a high purity dimer product, reducing unit piece count and plot size.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: April 26, 2022
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Rosette Barias, Liang Chen, Michael Jon Scott
  • Publication number: 20220098496
    Abstract: Embodiments disclosed herein relate to systems and processes for producing olefins and/or dienes. The systems and processes may include thermally cracking a C1-C4 hydrocarbon containing feed to produce a cracked hydrocarbon effluent containing a mixture of olefins and paraffins. The systems and processes may also include dehydrogenating the cracked hydrocarbon effluent to produce a dehydrogenated hydrocarbon effluent containing additional olefins and/or dienes.
    Type: Application
    Filed: October 15, 2021
    Publication date: March 31, 2022
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventors: Kandasamy Meenakshi Sundaram, Ronald M. Venner
  • Patent number: 11286215
    Abstract: A cascade reactor scheme with acid and hydrocarbon flowing in reverse directions. The systems and processes for alkylation of olefins herein may include providing a first olefin to a first alkylation zone, and a second olefin to a second alkylation zone. Isoparaffin may be provided to the first alkylation zone. The isoparaffin and first olefin may be contacted with a partially spent sulfuric acid in the first alkylation zone to form a spent acid phase and a first hydrocarbon phase including alkylate and unreacted isoparaffin. The first hydrocarbon phase and second olefin may be contacted with a sulfuric acid feed in the second alkylation zone to form a second hydrocarbon phase, also including alkylate and unreacted isoparaffin, and the partially spent sulfuric acid that is fed to the first alkylation zone. Further, the second hydrocarbon phase may be separated, recovering an isoparaffin fraction and an alkylate product fraction.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: March 29, 2022
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Zan Liu, Peter Loezos, Jackeline Medina, Romain Lemoine
  • Patent number: 11286431
    Abstract: Apparatus and processes herein provide for converting hydrocarbon feeds to light olefins and other hydrocarbons. The processes and apparatus include a conventional riser reactor in combination with a mixed flow (e.g., including both counter-current and co-current catalyst flows) fluidized bed reactor designed for maximizing light olefins production. The effluents from the riser reactor and mixed flow reactor are processed in a catalyst disengagement vessel, and the catalysts used in each reactor may be regenerated in a common catalyst regeneration vessel. Further, integration of the two-reactor scheme with a catalyst cooler provides a refinery the flexibility of switching the operation between the two-reactor flow scheme, a catalyst cooler only flow scheme, or using both simultaneously.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: March 29, 2022
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Liang Chen, Peter Loezos, Bryan Tomsula, Rama Rao Marri, Zan Liu
  • Patent number: 11287196
    Abstract: A heat exchanger including a shell having a longitudinal axis, a plurality of baffles, such as elliptical sector-shaped baffles, each mounted in the shell at a helix angle HB to guide a fluid flow into a helical pattern through the shell. Each of the plurality of baffles includes an outer circumferential edge, a proximal radial edge, a distal radial edge, a proximal side, a distal side, and a plurality of spaced apart holes that are traversed by a plurality of axially extending tubes. Each of the first plurality of seal strips is disposed from a proximal of the plurality of baffles to a distal of the plurality of baffles.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 29, 2022
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Eric Drew Macedo, Richard John Jibb, Sherif Elsayed, Melanie O'Sullivan
  • Publication number: 20220064078
    Abstract: Methods and systems for producing high purity methanol and isobutene from crude MTBE feed using multiple divided wall columns are provided. The methods can include purifying the MTBE, dissociating the MTBE to produce isobutene and methanol, purifying the isobutene and recovering/purifying methanol.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 3, 2022
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventors: Rosette Barias, Alejandro Maurer
  • Publication number: 20220056353
    Abstract: Processes herein may be used to thermally crack various hydrocarbon feeds, and may eliminate the refinery altogether while making the crude to chemicals process very flexible in terms of crude. In embodiments herein, crude is progressively separated into at least light and heavy fractions. Depending on the quality of the light and heavy fractions, these are routed to one of three upgrading operations, including a fixed bed hydroconversion unit, a fluidized catalytic conversion unit, or a residue hydrocracking unit that may utilize an ebullated bed reactor. Products from the upgrading operations may be used as feed to a steam cracker.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Applicants: LUMMUS TECHNOLOGY LLC, Saudi Aramco Technologies Company, Chevron Lummus Global LLC
    Inventors: Essam Abdullah Al-Sayed, Ujjal Mukherjee, Kareemuddin Shaik, Pedro Santos, Theodorus Maesen, Mazin Tamimi, Julie Chabot, Ibrahim Abba, Kandasamy Sundaram, Sami Barnawi, Ronald Venner, Raghu Narayan, Meredith Lansdown
  • Publication number: 20220055005
    Abstract: Apparatus and processes herein provide for converting hydrocarbon feeds to light olefins and other hydrocarbons. The processes and apparatus include, in some embodiments, feeding a hydrocarbon, a first catalyst and a second catalyst to a reactor, wherein the first catalyst has a smaller average particle size and is less dense than the second catalyst. A first portion of the second catalyst may be recovered as a bottoms product from the reactor, and a cracked hydrocarbon effluent, a second portion of the second catalyst, and the first catalyst may be recovered as an overhead product from the reactor. The second portion of the second catalyst may be separated from the overhead product, providing a first stream comprising the first catalyst and the hydrocarbon effluent and a second stream comprising the separated second catalyst, allowing return of the separated second catalyst in the second stream to the reactor.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventors: Liang Chen, Peter Loezos, Rama Rao Marri, Bryan Tomsula, Jon A. Hood, Hardik Singh, Michael Dorsey, Justin Breckenridge
  • Publication number: 20220056354
    Abstract: Processes herein may be used to thermally crack various hydrocarbon feeds, and may eliminate the refinery altogether while making the crude to chemicals process very flexible in terms of crude. In embodiments herein, crude is progressively separated into at least light and heavy fractions. Depending on the quality of the light and heavy fractions, these are routed to one of three upgrading operations, including a fixed bed hydroconversion unit, a fluidized catalytic conversion unit, or a residue hydrocracking unit that may utilize an ebullated bed reactor. Products from the upgrading operations may be used as feed to a steam cracker.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Applicants: Lummus Technology LLC, Saudi Aramco Technologies Company, Chevron Lummus Global LLC
    Inventors: Essam Abdullah Al-Sayed, Ujjal Mukherjee, Kareemuddin Shaik, Pedro Santos, Theodorus Maesen, Mazin Tamimi, Julie Chabot, Ibrahim Abba, Kandasamy Sundaram, Sami Barnawi, Ronald Venner, Raghu Narayan, Meredith Lansdown
  • Patent number: 11254626
    Abstract: Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C2-rich effluent, a methane-rich effluent, and a nitrogen-rich effluent. Advantageously, in some embodiments the separation is achieved with little or no external refrigeration requirement.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 22, 2022
    Assignee: Lummus Technology LLC
    Inventors: Sam Weinberger, Justin Dwight Edwards, Julian Wolfenbarger, Srinivas R. Vuddagiri, Iraj Isaac Rahmim
  • Patent number: 11254627
    Abstract: Integrated systems are provided for the production of higher hydrocarbon compositions, for example liquid hydrocarbon compositions, from methane using an oxidative coupling of methane system to convert methane to ethylene, followed by conversion of ethylene to selectable higher hydrocarbon products. Integrated systems and processes are provided that process methane through to these higher hydrocarbon products.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: February 22, 2022
    Assignee: Lummus Technology LLC
    Inventors: Greg Nyce, Peter Czerpak, Carlos Faz, Jarod McCormick, William Michalak, Bipinkumar Patel, Guido Radaelli, Tim A. Rappold, Ron Runnebaum, Erik C. Scher, Aihua Zhang, Joel Cizeron
  • Publication number: 20220048843
    Abstract: A process for supplying deaerated water to a chemical plant that includes a distillation column for separating a reaction effluent comprising water and a product. The process includes inventorying the distillation column with aerated water (water having an oxygen content of greater than 50 ppbw, such as greater than 1 ppmw). The aerated water in the distillation column may then be distilled to produce an oxygen-containing overheads and a bottoms fraction comprising deaerated water. The deaerated water in the bottoms fraction ma be transported to an upstream or a downstream unit operation, and utilizing the deaerated water in the upstream or downstream unit operation. The reaction effluent is fed to the distillation column, transitioning the distillation column from separating oxygen from water to operations for separating the product from the water.
    Type: Application
    Filed: August 12, 2021
    Publication date: February 17, 2022
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventors: Rosette Barias, Maurice Korpelshoek, Michael Jon Scott, Eric Arthur Schwarz, Shahid Jamal