Patents Assigned to MACOM Technology Solution Holdings, Inc.
  • Patent number: 11159125
    Abstract: Apparatus and methods for an inverted Doherty amplifier operating at gigahertz frequencies are described. RF fractional bandwidth and signal bandwidth may be increased over a conventional Doherty amplifier configuration when impedance-matching components and an impedance inverter in an output network of the inverted Doherty amplifier are designed based on characteristics of the main and peaking amplifier and asymmetry factor of the amplifier.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: October 26, 2021
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: Gerard Bouisse, Christian Cassou
  • Patent number: 11146340
    Abstract: A method and system for reducing power supply noise comprising receiving a primary data stream at a data rate. The primary data stream comprises a stream of bits having logical values of either zero or one. Then, splitting the primary data stream to create a first group of lower rate data streams and a second group of lower rate data streams. Processing the second group of lower rate data streams to invert the logic values of the bits of the lower rate data streams to create processed lower rate data streams. The first group of lower rate data streams are combined with the processed lower rate data streams to create a complementary data stream. Then, processing the primary data stream and the complementary data stream concurrently with a data processing system, the concurrent processing reducing noise on the power supply.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: October 12, 2021
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventor: Nicolas Alain Paul Nodenot
  • Publication number: 20210313932
    Abstract: Apparatus and methods for an inverted Doherty amplifier operating at gigahertz frequencies are described. RF fractional bandwidth and signal bandwidth may be increased over a conventional Doherty amplifier configuration when impedance-matching components and an impedance inverter in an output network of the inverted Doherty amplifier are designed based on characteristics of the main and peaking amplifier and asymmetry factor of the amplifier.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventors: Christian Cassou, Gerard Bouisse
  • Patent number: 11139949
    Abstract: A system for controlling equalization applied to a received signal comprising an equalizer configured to equalize on a received signal to generate an equalized signal, and a clock recovery module configured to recover a clock signal from the equalized signal or the received signal. A clock adjustment system is configured to receive the clock signal, and at least one control signal, to create a sampling clock signal. A filter is configured to filter the equalized signal to create a filtered signal. A sampling unit samples the filtered signal or the equalized signal such that the output of the sampling unit is provided to a controller. The controller is configured to receive and process the output of the sampling unit to generate a boost signal, and the controller is further configured to provide the boost signal to the equalizer to control the amount of equalization performed by the equalizer.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: October 5, 2021
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: Nicolas Alain Paul Nodenot, Yohan Denis Lilian Piccin
  • Publication number: 20210296452
    Abstract: Extrinsic structure that is formed outside the active regions of active devices can influence aging characteristics and performance of the active devices. Extrinsic structure is described that can reduce gate leakage current in transistors by over four orders of magnitude.
    Type: Application
    Filed: August 6, 2019
    Publication date: September 23, 2021
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventors: Allen W. Hanson, Chuanxin Lian, Wayne Mack Struble
  • Patent number: 11127737
    Abstract: A number of monolithic diode limiter semiconductor structures are described. The diode limiters can include a hybrid arrangement of diodes with different intrinsic regions, all formed over the same semiconductor substrate. In one example, two PIN diodes in a diode limiter semiconductor structure have different intrinsic region thicknesses. The first PIN diode has a thinner intrinsic region, and the second PIN diode has a thicker intrinsic region. This configuration allows for both the thin intrinsic region PIN diode and the thick intrinsic region PIN diode to be individually optimized. The thin intrinsic region PIN diode can be optimized for low level turn on and flat leakage, and the thick intrinsic region PIN diode can be optimized for low capacitance, good isolation, and high incident power levels. This configuration is not limited to two stage solutions, as additional stages can be used for higher incident power handling.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: September 21, 2021
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: James Joseph Brogle, Joseph Gerard Bukowski, Margaret Mary Barter, Timothy Edward Boles
  • Publication number: 20210278610
    Abstract: Example polarization splitter and rotator devices are described. In one example, an optical apparatus includes a splitter configured to split a light signal into a first signal having a first polarization and a second signal having a second polarization, a polarization rotator configured to rotate the second polarization of the second signal into a third polarization, and a polarization mode converter configured to convert the third polarization of the second signal into the first polarization. In certain aspects of the embodiments, the splitter can be a curved multi-mode inference (MMI) polarization splitter, and the polarization rotator comprises input and output ports, with the output port being wider than the input port. The polarization mode converter can be an asymmetrical waveguide taper mode converter. The devices described herein can overcome the deficiencies of conventional devices and provide low insertion loss, flat and/or wide wavelength response, high fabrication tolerance, and compact size.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 9, 2021
    Applicant: MACOM Technology Solutions Holdings, Inc.
    Inventors: Yunchu Li, Austin G. Griffith, Rich R. Grzybowski
  • Patent number: 11070297
    Abstract: System and method of adapting thresholds for constellation selection based on statistic distributions of received data symbols. To determine an adapted threshold, an expected ratio of received symbols with values in a certain range is preset based on an expected statistic distribution of data symbols across the multiple constellations. A first and a second ratios are defined based on the expected ratio, the first ratio being the expected ratio minus an error ratio and the second ratio being the expected ratio plus the error ratio. A first value is determined which makes the received symbols in a firs range to constitute the first ratio of a set of slicer inputs. A second value is determined which makes the received symbols in the second range to constitute the second ratio of a set of slicer outputs. The adapted threshold is then obtained based on the first and the second value.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: July 20, 2021
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventor: Yehuda Azenkot
  • Patent number: 11056483
    Abstract: Apparatus and methods relating to heterolithic microwave integrated circuits HMICs are described. An HMIC can include different semiconductor devices formed from different semiconductor systems in different regions of a same substrate. An HMIC can also include bulk regions of low-loss electrically-insulating material extending through the substrate and located between the different semiconductor regions. Passive RF circuit elements can be formed on the low-loss electrically-insulating material.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: July 6, 2021
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: Timothy E. Boles, Wayne Mack Struble
  • Patent number: 11050389
    Abstract: Apparatus and methods for an inverted Doherty amplifier operating at gigahertz frequencies are described. RF fractional bandwidth and signal bandwidth may be increased over a conventional Doherty amplifier configuration when impedance-matching components and an impedance inverter in an output network of the inverted Doherty amplifier are designed based on characteristics of the main and peaking amplifier and asymmetry factor of the amplifier.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: June 29, 2021
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: Christian Cassou, Gerard Bouisse
  • Patent number: 11048052
    Abstract: Example polarization splitter and rotator devices are described. In one example, an optical apparatus includes a splitter configured to split a light signal into a first signal having a first polarization and a second signal having a second polarization, a polarization rotator configured to rotate the second polarization of the second signal into a third polarization, and a polarization mode converter configured to convert the third polarization of the second signal into the first polarization. In certain aspects of the embodiments, the splitter can be a curved multi-mode inference (MMI) polarization splitter, and the polarization rotator comprises input and output ports, with the output port being wider than the input port. The polarization mode converter can be an asymmetrical waveguide taper mode converter. The devices described herein can overcome the deficiencies of conventional devices and provide low insertion loss, flat and/or wide wavelength response, high fabrication tolerance, and compact size.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: June 29, 2021
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: Yunchu Li, Austin G. Griffith, Rich R. Grzybowski
  • Patent number: 11038023
    Abstract: III-nitride materials are described herein, including material structures comprising III-nitride material regions (e.g., gallium nitride material regions). In certain cases, the material structures also comprise substrates having relatively high electrical conductivities. Certain embodiments include one or more features that reduce the degree to which thermal runaway occurs, which can enhance device performance including at elevated flange temperatures. Some embodiments include one or more features that reduce the degree of capacitive coupling exhibited during operation. For example, in some embodiments, relatively thick III-nitride material regions and/or relatively small ohmic contacts are employed.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: June 15, 2021
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: Timothy E. Boles, Wayne Mack Struble
  • Patent number: 11038473
    Abstract: Circuits for protecting devices, such as gallium nitride (GaN) devices, and operating methods thereof are described. Such circuits may include a temperature sensor configured to sense the temperature of at least a portion of a device, and a phase shifter configured to shift the phase of the signal output by the device, when the sensed temperature is outside a safe temperature range, e.g., above a predefined temperature threshold. The phase may be shifted discretely or continuously. These circuits safeguard devices from damaging operating conditions to prolong the operating life of the protected devices.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: June 15, 2021
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventor: Thomas Kelly
  • Patent number: 11018220
    Abstract: Structures and methods for isolating semiconductor devices and improving device reliability under harsh environmental conditions are described. An isolation region may be formed by ion implantation in a region of semiconductor surrounding a device. The implantation region may extend into streets of a wafer. A passivation layer may be deposited over the implantation region and extend further into the streets than the isolation region to protect the isolation region from environmental conditions that may adversely affect the isolation region.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: May 25, 2021
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: Allen W. Hanson, Wayne Mack Struble, John Claassen Roberts
  • Patent number: 11018477
    Abstract: A tunable laser device is described. In one example, the tunable laser device includes an adaptive ring mirror, a gain waveguide, a loop mirror waveguide, and a booster amplifier waveguide. The gain waveguide and the boost amplifier waveguide can be formed in a semiconductor optical amplifier (SOA) region of the tunable laser device, and the adaptive ring mirror and the loop mirror waveguide can be formed in a silicon photonics region of the tunable laser device. The adaptive ring mirror includes a phase shifter optically coupled between a number of MMI couplers. By inducing a phase shift using the phase shifter, the wavelength of the output of the tunable laser device can be altered or adjusted for use in coherent fiber-optic communications, for example, among other applications.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: May 25, 2021
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventor: Haruhisa Soda
  • Patent number: 11005573
    Abstract: A system and method for controlling optical receiver operation in response to a received optic signal power level that includes providing an optic signal receiver having operation determined by one or more system settings. During operation, the optic signal is received and converted to an electrical signal. The electrical signal is evaluated to determine a power level of the electrical signal. Responsive to the power level of the electrical signal exceeding a first predetermined threshold, adjusting a first system setting and responsive to the power level of the received electrical signal decreasing below a second predetermined threshold, adjusting the first system setting. Then, responsive to the power level of the received electrical signal exceeding a third predetermined threshold, adjusting a second system setting and responsive to the power level of the received electrical signal decreasing below a fourth predetermined threshold, adjusting the second system setting.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: May 11, 2021
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: Vasilis Papanikolaou, Jeffrey Allen
  • Patent number: 10985284
    Abstract: High-voltage, gallium-nitride Schottky diodes are described that are capable of withstanding reverse-bias voltages of up to and in excess of 2000 V with reverse current leakage as low as 0.4 microamp/millimeter. A Schottky diode may comprise a lateral geometry having an anode located between two cathodes, where the anode-to-cathode spacing can be less than about 20 microns. A diode may include at least one field plate connected to the anode that extends above and beyond the anode towards the cathodes.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: April 20, 2021
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: Timothy E. Boles, Douglas Carlson, Anthony Kaleta
  • Patent number: 10950598
    Abstract: Apparatus and methods relating to heterolithic microwave integrated circuits HMICs are described. An HMIC can include different semiconductor devices formed from different semiconductor systems in different regions of a same substrate. An HMIC can also include bulk regions of low-loss electrically-insulating material extending through the substrate and located between the different semiconductor regions. Passive RF circuit elements can be formed on the low-loss electrically-insulating material.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: March 16, 2021
    Assignee: MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC.
    Inventors: Timothy E. Boles, Wayne Mack Struble
  • Patent number: 10938604
    Abstract: A system for receiving signals transmitted via serial links includes an analog-to-digital converter configured to sample the first analog signal at a first rate, and generate a first digital input signal having a second data rate. The system also includes a decimator coupled to an output of the equalizer and configured to downsample the first equalized signal to a decimated signal having the first data rate. The system further includes a fast equalization module for determining output data corresponding to the communications signal. The fast equalization module includes a filter to access an output of the equalizer, a second slicer module to access an output of the filter and produce a data output corresponding to the communications signal, a lookup table to provide filtering coefficients to the filter, and a coefficient improvement module to improve the coefficients based on an error signal from the filter.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: March 2, 2021
    Assignee: Macom Technology Solutions Holdings, Inc
    Inventors: Yehuda Azenkot, Georgios Takos, Bart R Zeydel
  • Patent number: 10938365
    Abstract: A system for controlling convergence of gain to a target value for a variable gain amplifier comprising a detector module configured to determine a magnitude value of a variable gain amplifier output. Also, part of this embodiment is a comparator module configured to compare the magnitude value to a target value and responsive to the comparison, generate an up_dn signal. A digital control module is configured to receive the up_dn signal and processes the up_dn signal to generate a control vector. One or more digital to analog converters are configured to convert the control vector to an analog control signal such that the analog control signal controls the gain of the variable gain amplifier. Various methods of operation exist for this hardware configured to improve convergence time to a target gain value while controlling the rate of change of the gain.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: March 2, 2021
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventor: George L. Barrier, IV