Patents Assigned to Massachusetts Institute of Technology
  • Publication number: 20190054637
    Abstract: Embodiments described herein relate to expandable robotic arms. According to some embodiments, the robotic arm may include a series of expandable segments connected to each other. Further, each of the expandable segments may be individually controlled to expand and/or tilt with one or two tilt degrees of freedom. In operation, the robotic arm may expand sequentially segment by segment from a proximal most segment to a distal most segment to reach a target position and orientation from an initial position and orientation. A variety of methods and algorithms for pathfinding and otherwise operating such a robotic arm are also described.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 21, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Haruhiko Harry Asada, Abbas Munir Shikari
  • Patent number: 10209208
    Abstract: Provided in one embodiment is a method of identifying a stable phase of an ordering binary alloy system comprising a solute element and a solvent element, the method comprising: determining at least three thermodynamic parameters associated with grain boundary segregation, phase separation, and intermetallic compound formation of the ordering binary alloy system; and identifying the stable phase of the ordering binary alloy system based on the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter by comparing the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter with a predetermined set of respective thermodynamic parameters to identify the stable phase; wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: February 19, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Heather A. Murdoch, Christopher A. Schuh
  • Patent number: 10206637
    Abstract: An x-ray imaging device can include an x-ray detector and an optical-blocking filter. The x-ray detector has an entrance-window surface for receiving x-rays, at least one side surface, and a back surface facing in an opposite direction from the entrance-window surface. The optical-blocking filter is deposited on and fully covers at least the entrance-window surface and the side surface of the x-ray detector, wherein the optical-blocking filter blocks visible, ultraviolet, and near-infrared light.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: February 19, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Kevin K. Ryu, Peter W. O'Brien, Marshall W. Bautz, Vyshnavi Suntharalingam
  • Patent number: 10211531
    Abstract: A transmit antenna system configured to steer an electromagnetic beam includes an antenna and an electronic steering module. The antenna includes a first electric antenna element oriented parallel to a first plane, a second electric antenna element oriented orthogonally to the first electric antenna element and parallel to the first plane, and a first magnetic antenna element oriented orthogonally to the first electric antenna element and the second electric antenna element. The electronic steering module is in electrical communication with each of the first electric antenna element, the second electric antenna element, and the first magnetic antenna element. The electronic steering module includes at least one amplifier configured to control the amplitude of a current to each of the first electric antenna element, the second electric antenna element, and the first magnetic antenna element.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: February 19, 2019
    Assignee: Massachusetts Institute of Technology
    Inventor: Robert Galejs
  • Publication number: 20190049434
    Abstract: A system and method for isolating target substrates includes a microfluidic chip, comprising a plurality of processing units, each processing unit comprising: an inlet port, a plurality of first chambers connected to the inlet port by a fluid channel, the fluid channel comprising a plurality of valves, a plurality of second chambers, each of the second chambers connected to a respective first chamber by a fluid channel, each fluid channel including a controllable blocking valve, and a plurality of respective outlet ports, each outlet port in fluid communication with a respective one of said second chambers and each outlet port including a blocking valve. A magnet is adjacent the microfluidic chip and is movable relative to the microfluidic chip. A valve control is capable of actuating certain ones of the controllable blocking valves in response to a control signal.
    Type: Application
    Filed: February 3, 2017
    Publication date: February 14, 2019
    Applicants: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE GENERAL HOSPITAL CORPORATION
    Inventors: Paul Blainey, Dwayne Vickers, Nir Hacohen
  • Publication number: 20190048338
    Abstract: The disclosure relates to compositions comprising and methods for chemical modification of single guide RNA (sgRNA), tracrRNA and/or crRNA used individually or in combination with one another or Cas system components. Compositions comprising modified ribonucleic acids have been designed with chemical modification for even higher efficiency as unmodified native strand of sgRNA. Administration of modified ribonucleic acids will allow decreased immune response when administered to a subject, increased stability, increased editing efficiency and facilitated in vivo delivery of sgRNA via various delivery platforms. The disclosure also relates to methods of decreasing off-target effect of CRISPR and a CRISPR complex.
    Type: Application
    Filed: February 3, 2017
    Publication date: February 14, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Hao YIN, Daniel G. ANDERSON, Robert S. LANGER
  • Publication number: 20190046986
    Abstract: A particle separation device can include a fiber microfludic structure.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 14, 2019
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Rodger YUAN, Jaemyon LEE, Joel VOLDMAN, Yoel FINK, Hao-wei SU
  • Patent number: 10202711
    Abstract: An article can have a surface with selected wetting properties for various liquids.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: February 12, 2019
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Anish Tuteja, Wonjae Choi, Gareth H. McKinley, Robert E. Cohen, Joseph Mark Mabry
  • Patent number: 10201655
    Abstract: An apparatus provides targeted placement of openings for infusing fluids into a body. The apparatus provides a driving force to a penetrating medical device, such as a needle, when the apparatus tip encounters material of high resistance. When the apparatus tip encounters a low resistance material, no further driving force is applied to the apparatus due to contraction of an element made of interlaced flexible elements. A multi-opening needle is provided in some embodiments wherein placement of one of the openings in a target region with a relatively lower external pressure allows pressurized fluid to exit the needle while openings remaining in higher pressure, non-target regions do not release substantial amounts of the fluid.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: February 12, 2019
    Assignees: The Brigham and Women's Hospital, Inc., Massachusetts Institute of Technology
    Inventors: Eoin D. O'Cearbhaill, Bryan Laulicht, Alexander H. Slocum, Robert S. Langer, Omid C. Farokhzad, Jeffrey M. Karp
  • Patent number: 10205521
    Abstract: Traditional satellite-to-earth data transmission systems are constrained by inefficient relay schemes and/or short-duration data transfers at low data rates. Communication systems described herein achieve extremely high burst rate (e.g., 10 Gbps or greater) direct-to-Earth (DTE) data transmission over a free-space optical link between a spacecraft and a remote terminal, which may be a ground terminal or another space terminal. The optical link is established, for example, when the remote terminal is at an elevation of 20° with respect to a horizon of the remote terminal. In some embodiments, a data transmission burst contains at least 1 Terabyte of information, and has a duration of 6 minutes or less. The communication system can include forward error correction by detecting a degradation of a received free-space optical signal and re-transmitting at least a portion of the free-space optical signal.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: February 12, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Don M. Boroson, Bryan Shawn Robinson, Bryan M. Reid
  • Patent number: 10201618
    Abstract: Provided herein are compounds of Formula (I), and salts thereof, wherein each instance of RL is independently optionally substituted C6-C40 alkenyl. Further provided are compositions comprising a compound of Formula (I) and an agent. Further provided are methods and kits using the compositions for delivering an agent to a subject or cell and for treating and/or preventing a range of diseases. Further provided are methods of preparing compounds of Formula (I) and precursors thereof.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: February 12, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel Griffith Anderson, Joseph R. Dorkin, Owen Shea Fenton, Kevin John Kauffman, Rebecca L. McClellan
  • Patent number: 10205195
    Abstract: Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten alkali metal and the electrode comprising the combined alkali/non-alkali metals.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: February 12, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Dane A. Boysen, David J. Bradwell, Kai Jiang, Hojong Kim, Luis A. Ortiz, Donald R. Sadoway, Alina A. Tomaszowska, Weifeng Wei, Kangli Wang
  • Patent number: 10203285
    Abstract: A system includes a build-up cavity to locally increase the power of light beams within the build-up cavity, where the light beams interact with samples to sense a substance of interest. The build-up cavity is disposed within a main cavity that includes a gain material to amplify the light beams. A portion of the light beams oscillating in the build-up cavity propagators through the build-up cavity and functions as a feedback to control the linewidth of the light beams. The two cavities can function as two separate “filters” and light beams at wavelengths that propagate through both of these “filters” can be preferentially amplified. The combination of the build-up cavity and the main cavity can achieve high power and narrow linewidth for the light beams without complex electronics, thereby decreasing the size, weight, and power (SWaP) of the system.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: February 12, 2019
    Assignee: Massachusetts Institute of Technology
    Inventor: Shawn Redmond
  • Patent number: 10202546
    Abstract: In this invention, polyimidazole ligands (PILs) incorporating pendant imidazole moieties for nanocrystal binding and either sulfonatebetaine, carboxybetaine, or phosphocholinebetaine moieties for water-solubilization have been developed. Greatly enhanced stability of nanocrystals (both over time and in wide pH range) was achieved by incorporating multi-dentate imidazole moieties which provide strong coordination of the ligand to the nanocrystal surface and prevent aggregation of nanocrystals. Synthesis of betaine PILs was developed by modifying the synthesis of recently developed PEG containing poly imidazole ligands (PEG PILs). These nanocrystals are compact, water soluble, and biocompatible.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: February 12, 2019
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Hee-Sun Han, Wenhao Liu, Moungi G. Bawendi
  • Patent number: 10201367
    Abstract: A tissue collection needle with a hollow interior provides two opposing tips with beveled edges on facets that drive tissue toward the hollow interior where the tissue can be gathered and severed from surrounding tissue as the needle advances through a biological specimen. The points and bevels are advantageously formed from a minimal number of cuts amenable to rapid fabrication from readily available hollow needle stock.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: February 12, 2019
    Assignee: Massachusetts Institute of Technology
    Inventor: Nikolai David Michael Begg
  • Patent number: 10205400
    Abstract: SSC energy buffer circuit includes a switching network and a plurality of energy storage capacitors. The switching network may operate at a relatively low switching frequency and can take advantage of soft charging of the energy storage capacitors to reduce loss. Efficiency of the SSC energy buffer circuit can be extremely high compared with the efficiency of other energy buffer circuits. The SSC energy buffer architecture exhibits losses that scale with the amount of energy buffered, such that a relatively high efficiency can be achieved across a desired operating range. Improvements in SSC energy buffer circuits include, in various implementations, the use of ground reference gate drive, the elimination of a separate precharge circuit through control of at least a portion of the switches of the SSC energy buffer circuit, and/or optimized ratio of capacitance values of two or more capacitors in an SSC energy buffer circuit.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: February 12, 2019
    Assignees: The Regents of the University of Colorado, a body corporated, Massachusetts Institute of Technology
    Inventors: Khurram K. Afridi, Yu Ni, Minjie Chen, Curtis Serrano, Benjamin Montgomery, David Perreault, Saad Pervaiz
  • Patent number: 10205046
    Abstract: Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V<kBT/q) can be accomplished by injecting phonons generated by non-radiative recombination back into the LED's semiconductor lattice. This raises the temperature of the LED's active rejection, resulting in thermally assisted injection of holes and carriers into the LED's active region. This phonon recycling or thermo-electric pumping process can be promoted by heating the LED with an external source (e.g., exhaust gases or waste heat from other electrical components). It can also be achieved via internal heat generation, e.g., by thermally insulating the LED's diode structure to prevent (rather than promote) heat dissipation. In other words, trapping heat generated by the LED within the LED increases LED efficiency under certain bias conditions.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: February 12, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Parthiban Santhanam, Dodd Joseph Gray, Rajeev Jagga Ram
  • Patent number: 10203701
    Abstract: A mechanism for dynamically allocating tasks among multiple UAVs operating autonomously during a mission is discussed. Task assignment is adjusted by each UAV dynamically during the mission based on criteria related to the individual UAV's operational status and/or mission parameters. Task allocation is determined independently without group communication between the UAVs actively taking part in the mission and without direct communication to a ground-based controller. A communication UAV provides a shared memory space that may be utilized by each UAV in determining its own task allocation.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: February 12, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Heba Abdullatif Kurdi, Jonathan Patrick How
  • Publication number: 20190038775
    Abstract: Retroviral gene therapy vectors that are optimized for erythroid specific expression and treatment of hemoglobinopathic conditions are disclosed.
    Type: Application
    Filed: September 13, 2018
    Publication date: February 7, 2019
    Applicants: bluebird bio, Inc., Massachusetts Institute of Technology
    Inventors: Philippe Louis Leboulch, Robert Pawliuk, Karen Westerman
  • Publication number: 20190039959
    Abstract: There is provided a shape memory ceramic structure including an aggregate population of crystalline particles. Each crystalline particle in the population, of crystalline particles comprises a shape memory ceramic particle material. Each crystalline particle in the population of crystalline particles has a crystalline particle extent that is between about 0.5 microns and about fifty microns. At least a portion of the population of crystalline particles has a crystalline structure that is either oligocrystalline or monocrystalline.
    Type: Application
    Filed: February 10, 2017
    Publication date: February 7, 2019
    Applicants: Massachusetts Institute of Technology, Nanyang Technological University
    Inventors: Zehui Du, Hang Yu, Christopher A. Schuh, Chee Lip Gan