Patents Assigned to Massachusetts Institute Technology
  • Patent number: 11898142
    Abstract: The embodiments disclosed herein utilized RNA targeting effectors to provide a robust CRISPR-based diagnostic with attomolar sensitivity. Embodiments disclosed herein can detect both DNA and RNA with comparable levels of sensitivity and can differentiate targets from non-targets based on single base pair differences. Moreover, the embodiments disclosed herein can be prepared in freeze-dried format for convenient distribution and point-of-care (POC) applications. Such embodiments are useful in multiple scenarios in human health including, for example, viral detection, bacterial strain typing, sensitive genotyping, and detection of disease-associated cell free DNA.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: February 13, 2024
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows Harvard College
    Inventors: Feng Zhang, Jonathan Gootenberg, Omar Abudayyeh
  • Patent number: 11897905
    Abstract: The present disclosure provides cyclic silyl ethers of the formula: and salts thereof. The cyclic silyl ethers may be useful as monomers for preparing polymers. Also described herein are polymers prepared by polymerizing a cyclic silyl ether and optionally one or more additional monomers. The polymers may be degradable (e.g., biodegradable). One or more O—Si bonds of the polymers may be the degradation sites. Also described herein are compositions and kits including the cyclic silyl ethers or polymers; methods of preparing the polymers; and methods of using the polymers, compositions, and kits.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: February 13, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Jeremiah A. Johnson, Peyton Shieh, Wenxu Zhang
  • Patent number: 11897813
    Abstract: A nanoporous carbon-loaded cement composite that conducts electricity. The nanoporous carbon-loaded cement composite can be used in a variety of different fields of use, including, for example, a structural super-capacitor as an energy solution for autonomous housing and other buildings, a heated cement for pavement deicing or house basement insulation against capillary rise, a protection of concrete against freeze-thaw (FT) or alkali silica reaction (ASR) or other crystallization degradation processes, and as a conductive cable, wire or concrete trace.
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: February 13, 2024
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITÉ DE BORDEAUX
    Inventors: Roland J. M. Pellenq, Aikaterini Ioannidou, Nicolas Chanut, Thibaut Divoux, Renal Backov, Franz-Josef Ulm
  • Patent number: 11896633
    Abstract: Provided are engineered phages populations, which are homogeneous in length, as well as methods of making and methods of using such phages. Also provided are engineered chlorotoxin-phages as well as their methods of making and using. The disclosed homogeneous phage populations and chlorotoxin-phages may be used, for example, for treating and/or imaging tumors, such as central nervous system tumors.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: February 13, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Angela M. Belcher, Uyanga Tsedev, Fred Lam
  • Patent number: 11897953
    Abstract: This invention relates generally to compositions and methods for modulating complement component 3 (C3) activity or expression to treat, control or otherwise influence tumors and tissues, including cells and cell types of the tumors and tissues, and malignant, microenvironmental, or immunologic states of the tumor cells and tissues. The invention also relates to methods of diagnosing, prognosing and/or staging of tumors, tissues and cells.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: February 13, 2024
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Aviv Regev, Ana Carrizosa Anderson, Ayshwarya Subramanian, Orit Rozenblatt-Rosen
  • Patent number: 11902407
    Abstract: Techniques are disclosed for an adaptive and causal random linear network coding (AC-RLNC) with forward error correction (FEC) for a communication channel with delayed feedback. An example methodology implementing the techniques includes transmitting one or more coded packets in a communication channel, determining a channel behavior of the channel, and adaptively adjusting a transmission of a subsequent coded packet in the first channel based on the determined channel behavior. The communication channel may be a point-to-point communication channel between a sender and a receiver. The channel behavior may be determined based on feedback acknowledgements provided by the receiver. The subsequent coded packet may be a random linear combination of one or more information packets.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: February 13, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Muriel Medard, Derya Malak, Alejandro Cohen
  • Patent number: 11896619
    Abstract: The present disclosure relates to compounds (e.g., antibodies, antigen-binding fragments thereof, bispecific molecules, or chimeric antigen receptor polypeptides) that bind to a neoepitope of mutant nucleophosmin (NPM1c) in complex with, or presented by, a class I major histocompatibility complex (MHC class I) protein, or cells expressing such compounds, and their use in methods for treating, or ameliorating one or more symptoms of, cancer.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: February 13, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Jianzhu Chen, Guozhu Xie
  • Patent number: 11898141
    Abstract: Disclosed is a method of generating a set of sequence-verified nucleic acid elements for the combinatorial construction of genetic elements. The method includes: providing a plurality of nucleic acid parts; assembling nucleic acid parts to form a one or more nucleic acid elements, wherein the nucleic acid elements include at least two sequences selected from the plurality of parts; and determining the sequence of the nucleic acid elements. Further disclosed is a pool of higher-order nucleic acid constructs or amplification products thereof, comprising one or more nucleic acid elements as well as kits including a pool of sequence-verified nucleic acid elements of claims and/or a pool of higher-order nucleic acid constructs; and a plurality of primers for retrieving one or more sequence-verified nucleic acid elements and/or higher-order nucleic acid constructs.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: February 13, 2024
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Robert Nicol, Lauren Andrews, Tarjei Mikkelsen, Christopher Voigt
  • Publication number: 20240044873
    Abstract: Disclosed herein are compositions of retroviruses and methods of using the same for gene delivery, wherein the retroviruses comprise a viral envelope protein comprising at least one mutation that diminishes its native function, a non-viral membrane-bound protein comprising a membrane-bound domain and an extracellular targeting domain.
    Type: Application
    Filed: August 30, 2023
    Publication date: February 8, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Michael Birnbaum, Connor Dobson
  • Patent number: 11891646
    Abstract: Some aspects of this invention provide methods and bioreactors for converting a carbon source into a lipid. In some embodiments, lipid production is carried out in an aerobic fermentor and carbon dioxide generated during lipid production is converted into a carbon substrate by CO2 fixation in an anaerobic fermentor. In some embodiments, the carbon substrate generated by CO2 fixation is used as the carbon source for lipid production, thus achieving total carbon utilization in lipid production.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: February 6, 2024
    Assignee: Massachusetts Institute of Technology
    Inventor: Gregory Stephanopoulos
  • Patent number: 11891481
    Abstract: Compositions and methods related to the synthesis and application of poly(aryl ether)s are generally described.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: February 6, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy Manning Swager, Zachary Smith, Francesco Maria Benedetti, Sheng Guo
  • Patent number: 11892668
    Abstract: The present disclosure describes photonic materials that reversibly change color in response to the material being stretched or otherwise mechanically deformed.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: February 6, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Mathias Kolle, Benjamin Miller
  • Patent number: 11892015
    Abstract: A method of performing wireless actuation by inductive heating of magnetic particles. The method provides a bladder having an inner surface and an outer surface, the inner surface forming an interior area, the bladder configured to expand or retract so as to change an area of the interior area, (ii) a plurality of magnetic particles suspended in a fluid medium and disposed within the interior area, and (iii) a sleeve disposed on the outer surface of the bladder. The method excites the plurality of magnetic particles by application of an alternating magnetic field to which the particles reaction. The method causes, by the excited magnetic particles, a phase transition to the fluid medium within the interior area which causes the bladder to expand, such that the sleeve confining the bladder generates actuation from the expansion or retraction of the bladder.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 6, 2024
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Seyed M. Mirvakili, Ian W. Hunter
  • Patent number: 11890377
    Abstract: The present invention provides, among other things, methods of delivering mRNA in vivo, including administering to a subject in need of delivery a composition comprising an mRNA encoding a protein, encapsulated within a liposome such that the administering of the composition results in the expression of the protein encoded by the mRNA in vivo, wherein the liposome comprises a cationic lipid of formula I-c: or a pharmaceutically acceptable salt thereof.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: February 6, 2024
    Assignees: Translate Bio, Inc., Massachusetts Institute of Technology
    Inventors: Michael Heartlein, Daniel Anderson, Yizhou Dong, Frank DeRosa
  • Publication number: 20240035006
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered DNA or RNA-targeting systems comprising a novel DNA or RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: November 14, 2022
    Publication date: February 1, 2024
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology, University of Tokyo, The United States of America, as Represented by the Secretary Dept of Health and Human Services
    Inventors: Takashi Yamano, Hiroshi Nishimasu, Bernd Zetsche, Ian Slaymaker, Yinqing Li, Iana Fedorova, Kira Makarova, Linyi Gao, Eugene Koonin, Feng Zhang, Osamu Nureki
  • Publication number: 20240035048
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: June 30, 2023
    Publication date: February 1, 2024
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventor: Feng ZHANG
  • Publication number: 20240035007
    Abstract: The invention provides for systems, methods, and compositions for altering expression of target gene sequences and related gene products. Provided are structural information on the Cas protein of the CRISPR-Cas system, use of this information in generating modified components of the CRISPR complex, vectors and vector systems which encode one or more components or modified components of a CRISPR complex, as well as methods for the design and use of such vectors and components. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for utilizing the CRISPR-Cas system. In particular the present invention comprehends optimized functional CRISPR-Cas enzyme systems.
    Type: Application
    Filed: December 27, 2022
    Publication date: February 1, 2024
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology, University of Tokyo, President and Fellows of Harvard College
    Inventors: Silvana KONERMANN, Alexandro TREVINO, Mark BRIGHAM, Fei RAN, Patrick HSU, Chie-yu LIN, Osamu NUREKI, Hiroshi NISHIMASU, Ryuichiro ISHITANI, Feng ZHANG
  • Publication number: 20240033684
    Abstract: The removal of acid gases (e.g., non-carbon dioxide acid gases) using sorbents that include salts in molten form, and related systems and methods, are generally described.
    Type: Application
    Filed: February 9, 2023
    Publication date: February 1, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Trevor Alan Hatton, Takuya Harada, Cameron G. Halliday
  • Patent number: 11883505
    Abstract: Anticancer virus particles are described. Anticancer virus particles are filamentous or rod-shaped plant virus particle containing an anticancer agent within the interior of the virus particle. The anticancer agent can be attached either covalently or non-covalently within the interior of the virus particle. A therapeutically effective amount of an anticancer virus particle can be administered to a subject identified as having cancer to provide a method of cancer treatment.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: January 30, 2024
    Assignees: CASE WESTERN RESERVE UNIVERSITY, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Nicole F. Steinmetz, Stephen J. Lippard, Anna Czapar, Yaorong Zheng
  • Patent number: 11884717
    Abstract: Described herein are methods for suppressing an immune response in a subject, e.g., a subject with an autoimmune disease, by administering to the subject a therapeutically effective amount of recombinant CD5L, CD5L homodimers and/or CD5L:p40 heterodimers, or nucleic acids encoding any of these. Also described are methods for enhancing an immune response in a subject, e.g., a subject with cancer, infection, or an immune deficiency, by administering to the subject a therapeutically effective amount of an antibody or antigen-binding fragment thereof that binds specifically to CD5L, D5L homodimers and/or CD5L:p40 heterodimers, and inhibits their binding to the IL-23 receptor, or inhibits formation of the CD5L homodimer and/or CD5L:p40 heterodimer, or inhibitory nucleic acids that target CD5L and/or p40.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: January 30, 2024
    Assignees: The Brigham and Women's Hospital, Inc., The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Vijay K. Kuchroo, Chao Wang, Aviv Regev, Karthik Shekhar