Patents Assigned to Matheson Tri-Gas, Inc.
  • Publication number: 20220299170
    Abstract: The present invention relates to cylinder packages utilized in the delivery of highly toxic and/or flammable compounds to semiconductor manufacturers. More specifically, the present invention provides a cartridge adapted to removably attach to the gas outlet of a gas discharge passageway in a cylinder valve provided on a toxic gas containing cylinder package, the cartridge comprising a cylindrically shaped housing having at least one end fitted with a barrier member permeable to the toxic gas contained within the cylinder package and the housing containing a toxic-gas getter material.
    Type: Application
    Filed: March 15, 2022
    Publication date: September 22, 2022
    Applicant: Matheson Tri-Gas, Inc.
    Inventors: Mark Raynor, Rikard Wind
  • Patent number: 11027974
    Abstract: The present invention generally relates to the field of gas and liquid phase desiccation. In particular, the present invention relates to methods for removing moisture (and hence oxygen precursors) from hydrazine, thereby providing a high purity source gas suitable for use in vapor deposition processes, such as but not limited to, chemical vapor deposition (CVD) or an atomic layer deposition (ALD).
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: June 8, 2021
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Hideharu Shimizu, Mark Raynor, Daniel Tempel, Robin Gardiner, Daniel Alvarez, Jr.
  • Patent number: 10103507
    Abstract: The present invention relates to a system for recirculating the gas atmosphere within an excimer laser system, where contaminates, created in the laser's operation, are removed, and the gas concentrations of additive gases, such as Xe, Kr, or others, depleted in the laser operation, are rebalanced to specific lasing mixtures by analyzation and component replenishment from one or more external supplies.
    Type: Grant
    Filed: November 19, 2017
    Date of Patent: October 16, 2018
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Joseph Vininski, Dane Scott
  • Patent number: 10010853
    Abstract: The present invention relates, in general, to the purification of boron trichloride (BCl3). More particularly, the invention relates to a process for minimizing silicon tetrachloride (SiCl4) formation in BCl3 production and/or the removal of SiCl4 in BCl3 product stream by preventing/minimizing the silicon source in the reaction chambers. In addition, a hydride material may be used to convert any SiCl4 present to SiH4 which is easier to remove. Lastly freeze separation would replace fractional distillation to remove SiCl4 from BCl3 that has been partially purified to remove light boilers.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: July 3, 2018
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Mark W. Raynor, Daniel J. Tempel, Junpin Yao, Larry Wagg, Adam Seymour
  • Publication number: 20180127272
    Abstract: The present invention generally relates to the field of gas and liquid phase desiccation. In particular, the present invention relates to methods for removing moisture (and hence oxygen precursors) from hydrazine, thereby providing a high purity source gas suitable for use in vapor deposition processes, such as but not limited to, chemical vapor deposition (CVD) or an atomic layer deposition (ALD).
    Type: Application
    Filed: November 8, 2017
    Publication date: May 10, 2018
    Applicant: Matheson Tri-Gas, Inc.
    Inventors: Hideharu Shimizu, Mark Raynor, Daniel Tempel, Robin Gardiner, Daniel Alvarez, JR.
  • Publication number: 20170182558
    Abstract: The present invention generally relates to methods and apparatuses adapted to perform additive manufacturing (AM) processes and the resulting products made therefrom, and specifically, to AM processes that employ an energy beam to selectively fuse a base material to produce an object. More particularly, the invention relates to methods and systems that use reactive fluids to actively manipulate the surface chemistry of the base material prior to, during and/or after the AM process.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 29, 2017
    Applicant: Matheson Tri-Gas, Inc.
    Inventors: Hideharu Shimizu, Mark W. Raynor, Daniel Tempel, Junpin Yao, Larry Wagg, Robert Torres, JR.
  • Patent number: 9669378
    Abstract: The present invention relates, in general, to the purification of boron trichloride (BCl3). More particularly, the invention relates to a process for minimizing silicon tetrachloride (SiCl4) formation in BCl3 production and/or the removal of SiCl4 in BCl3 product stream by preventing/minimizing the silicon source in the reaction chambers. In addition, a hydride material may be used to convert any SiCl4 present to SiH4 which is easier to remove. Lastly freeze separation would replace fractional distillation to remove SiCl4 from BCl3 that has been partially purified to remove light boilers.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: June 6, 2017
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Mark W. Raynor, Daniel J. Tempel, Junpin Yao, Larry Wagg, Adam Seymour
  • Patent number: 9218962
    Abstract: A high order silane having a formula of SinH2n+2, in which n is an integer greater than 3, in combination with a germanium precursor gas is employed to deposit an epitaxial semiconductor alloy material including at least silicon and germanium on a single crystalline surface. The germanium precursor gas effectively reduces the gas phase reaction of the high order silane, thereby improving the thickness uniformity of the deposited epitaxial semiconductor alloy material. The combination of the high order silane and the germanium precursor gas provides a high deposition rate in the Frank-van der Merwe growth mode for deposition of a single crystalline semiconductor alloy material.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: December 22, 2015
    Assignees: GLOBALFOUNDRIES INC., MATHESON TRI-GAS, INC.
    Inventors: Paul D. Brabant, Keith Chung, Hong He, Devendra K. Sadana, Manabu Shinriki
  • Patent number: 8932406
    Abstract: The molecular etcher carbonyl fluoride (COF2) or any of its variants, are provided for, according to the present invention, to increase the efficiency of etching and/or cleaning and/or removal of materials such as the unwanted film and/or deposits on the chamber walls and other components in a process chamber or substrate (collectively referred to herein as “materials”). The methods of the present invention involve igniting and sustaining a plasma, whether it is a remote or in-situ plasma, by stepwise addition of additives, such as but not limited to, a saturated, unsaturated or partially unsaturated perfluorocarbon compound (PFC) having the general formula (CyFz) and/or an oxide of carbon (COx) to a nitrogen trifluoride (NF3) plasma into a chemical deposition chamber (CVD) chamber, thereby generating COF2. The NF3 may be excited in a plasma inside the CVD chamber or in a remote plasma region upstream from the CVD chamber.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 13, 2015
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Glenn Mitchell, Ramkumar Subramanian, Carrie L. Wyse, Robert Torres, Jr.
  • Patent number: 8759200
    Abstract: The present invention discloses that under modified chemical vapor deposition (mCVD) conditions an epitaxial silicon film may be formed by exposing a substrate contained within a chamber to a relatively high carrier gas flow rate in combination with a relatively low silicon precursor flow rate at a temperature of less than about 550° C. and a pressure in the range of about 10 mTorr-200 Torr. Furthermore, the crystalline Si may be in situ doped to contain relatively high levels of substitutional carbon by carrying out the deposition at a relatively high flow rate using tetrasilane as a silicon source and a carbon-containing gas such as dodecalmethylcyclohexasilane or tetramethyldisilane under modified CVD conditions.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: June 24, 2014
    Assignees: Matheson Tri-Gas, Inc., International Business Machines Corporation
    Inventors: Terry Arthur Francis, Satoshi Hasaka, Paul David Brabant, Robert Torres, Jr., Hong He, Alexander Reznicek, Thomas N. Adam, Devendra K. Sadana
  • Publication number: 20140060571
    Abstract: The molecular etcher carbonyl fluoride (COF2) or any of its variants, are provided for, according to the present invention, to increase the efficiency of etching and/or cleaning and/or removal of materials such as the unwanted film and/or deposits on the chamber walls and other components in a process chamber or substrate (collectively referred to herein as “materials”). The methods of the present invention involve igniting and sustaining a plasma, whether it is a remote or in-situ plasma, by stepwise addition of additives, such as but not limited to, a saturated, unsaturated or partially unsaturated perfluorocarbon compound (PFC) having the general formula (CyFz) and/or an oxide of carbon (COx) to a nitrogen trifluoride (NF3) plasma into a chemical deposition chamber (CVD) chamber, thereby generating COF2. The NF3 may be excited in a plasma inside the CVD chamber or in a remote plasma region upstream from the CVD chamber.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 6, 2014
    Applicant: Matheson Tri-Gas, Inc.
    Inventors: Glenn Mitchell, Ramkumar Subramanian, Carrie L. Wyse, Robert Torres, JR.
  • Publication number: 20140045324
    Abstract: A high order silane having a formula of SinH2n+2, in which n is an integer greater than 3, in combination with a germanium precursor gas is employed to deposit an epitaxial semiconductor alloy material including at least silicon and germanium on a single crystalline surface. The germanium precursor gas effectively reduces the gas phase reaction of the high order silane, thereby improving the thickness uniformity of the deposited epitaxial semiconductor alloy material. The combination of the high order silane and the germanium precursor gas provides a high deposition rate in the Frank-van der Merwe growth mode for deposition of a single crystalline semiconductor alloy material.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicants: MATHESON TRI-GAS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul D. Brabant, Keith Chung, Hong He, Devendra K. Sadana, Manabu Shinriki
  • Patent number: 8642454
    Abstract: Cyclic deposit and etch (CDE) selective epitaxial growth employs an etch chemistry employing a combination of hydrogen chloride and a germanium-containing gas to provide selective deposition of a silicon germanium alloy at temperatures lower than 625° C. High strain epitaxial silicon germanium alloys having a germanium concentration greater than 35 atomic percent in a temperature range between 400° C. and 550° C. A high order silane having a formula of SinH2n+2, in which n is an integer greater than 3, in combination with a germanium-containing precursor gas is employed to deposit the silicon germanium alloy with thickness uniformity and at a high deposition rate during each deposition step in this temperature range. Presence of the germanium-containing gas in the etch chemistry enhances the etch rate of the deposited silicon germanium alloy material during the etch step.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: February 4, 2014
    Assignees: International Business Machines Corporation, Matheson Tri-Gas, Inc.
    Inventors: Paul D. Brabant, Keith Chung, Hong He, Devendra K. Sadana, Manabu Shinriki
  • Patent number: 8623148
    Abstract: Methods of cleaning a processing chamber with nitrogen trifluoride (NF3) are described. The methods involve a concurrent introduction of nitrogen trifluoride and a reactive diluent into the chamber. The NF3 may be excited in a plasma inside the chamber or in a remote plasma region upstream from the chamber. The reactive diluent may be introduced upstream or downstream of the remote plasma such that both NF3 and the reactive diluent (and any plasma-generated effluents) are present in the chamber during cleaning. The presence of the reactive diluent enhances the chamber-cleaning effectiveness of the NF3.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: January 7, 2014
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Glenn Mitchell, Robert Torres, Jr., Adam Seymour
  • Patent number: 8535423
    Abstract: Methods of purifying hydrogen-containing materials are described. The methods may include the steps of providing a purifier material comprising silica. The silica may be heated at temperature of about 100° C. or more in a dry atmosphere to form activated silica. The activated silica may be contacted with a starting hydrogen-containing material, where the activated silica reduces a concentration of one or more impurity from the starting hydrogen-containing material to form the purified hydrogen-containing material, and where the activated silica does not decompose the purified hydrogen-containing material.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: September 17, 2013
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Tadaharu Watanabe, Mark Raynor, Ade Lau, Hirotaka Mangyo
  • Publication number: 20130133519
    Abstract: Methods of purifying hydrogen-containing materials are described. The methods may include the steps of providing a purifier material comprising silica. The silica may be heated at temperature of about 100° C. or more in a dry atmosphere to form activated silica. The activated silica may be contacted with a starting hydrogen-containing material, where the activated silica reduces a concentration of one or more impurity from the starting hydrogen-containing material to form the purified hydrogen-containing material, and where the activated silica does not decompose the purified hydrogen-containing material.
    Type: Application
    Filed: August 30, 2012
    Publication date: May 30, 2013
    Applicant: Matheson Tri-Gas, Inc.
    Inventors: Tadaharu Watanabe, Mark Raynor, Ade Lau, Hirotaka Mangyo
  • Patent number: 8182589
    Abstract: Methods and systems of purifying an acetylene process gas are described. The methods may include the steps of providing an acetylene vessel containing source acetylene mixed with a solvent impurity, and flowing the source acetylene through a purification container that holds a cooled purifying medium, where at least a portion of the solvent impurity in the source acetylene separates as a liquid impurity on the purifying medium. The method may also include removing the liquid from the purification container and flowing a purified acetylene gas from the purification container. The purified acetylene gas has a concentration of the solvent impurity of about 5 vol. % or less, and the separated liquid impurity is removed without interrupting the flow of the acetylene while the purified acetylene gas flows from the purification container to keep the concentration of the solvent impurity substantially constant in the purified acetylene gas.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: May 22, 2012
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Praveen Jha, Joseph V. Vininski
  • Patent number: 8142549
    Abstract: A method of reducing moisture in a fluorine-containing gas is described. The method may include the steps of providing a purifier material that includes elemental carbon, and flowing the unpurified fluorine-containing gas having an unpurified moisture concentration over or through the carbon-based purifier material. At least a portion of the moisture is captured in the purifier material so that a purified fluorine-containing gas that emerges downstream of the purifier material has a reduced moisture concentration that is about 50% or less of the unpurified moisture concentration.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 27, 2012
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Andrew Millward, Joseph V. Vininski, Robert Torres, Jr., Tadaharu Wantanbe, Carrie L. Wyse, Mark Raynor, Dan Davia, Praveen Jha
  • Publication number: 20120024223
    Abstract: Cyclohexasilane is used in chemical vapor deposition methods to deposit epitaxial silicon-containing films over substrates. Such methods are useful in semiconductor manufacturing to provide a variety of advantages, including uniform deposition over heterogeneous surfaces, high deposition rates, and higher manufacturing productivity. Furthermore, the crystalline Si may be in situ doped to contain relatively high levels of substitutional carbon by carrying out the deposition at a relatively high flow rate using cyclohexasilane as a silicon source and a carbon-containing gas such as dodecalmethylcyclohexasilane or tetramethyldisilane under modified CVD conditions.
    Type: Application
    Filed: June 23, 2011
    Publication date: February 2, 2012
    Applicant: Matheson Tri-Gas, Inc.
    Inventors: Robert Torres, JR., Terry Arthur Francis, Satoshi Hasaka, Paul David Brabant
  • Publication number: 20120003819
    Abstract: The present invention discloses that under modified chemical vapor deposition (mCVD) conditions an epitaxial silicon film may be formed by exposing a substrate contained within a chamber to a relatively high carrier gas flow rate in combination with a relatively low silicon precursor flow rate at a temperature of less than about 550° C. and a pressure in the range of about 10 mTorr-200 Torr. Furthermore, the crystalline Si may be in situ doped to contain relatively high levels of substitutional carbon by carrying out the deposition at a relatively high flow rate using tetrasilane as a silicon source and a carbon-containing gas such as dodecalmethylcyclohexasilane or tetramethyldisilane under modified CVD conditions.
    Type: Application
    Filed: June 23, 2011
    Publication date: January 5, 2012
    Applicants: International Business Machines Corporation, Matheson Tri-Gas, Inc.
    Inventors: Terry Arthur Francis, Satoshi Hasaka, Paul David Brabant, Robert Torres, JR., He Hong, Alexander Reznicek, Thomas N. Adam, Devendra K. Sadana