Patents Assigned to Max-Planck-Gesellschaft zur Forderung der Wissenschaften
  • Patent number: 11520370
    Abstract: A circuit for delaying an electric signal (CI), comprises an input for the electric signal (CI); an input for a control signal (EI); a first storage element (U5) for storing the control signal; a delay element for delaying the electric signal; and an output for the delayed electric signal (CO). According to the invention, the electric signal is delayed, based on the stored control signal. The delay circuit is employed in a fast all-digital clock frequency adaptation circuit for voltage droop tolerance.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: December 6, 2022
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.
    Inventors: Christoph Lenzen, Matthias Függer, Ben Wiederhake, Attila Kinali, Mordechai Medina
  • Patent number: 11511442
    Abstract: The present invention relates to a gripping apparatus comprising a membrane; a flexible housing; with said membrane being fixedly connected to a periphery of the housing. The invention further relates to a method of producing a gripping apparatus.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: November 29, 2022
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E.V., CARNEGIE MELLON UNIVERSITY
    Inventors: Sukho Song, Metin Sitti, Dirk-Michael Drotlef, Carmel Majidi
  • Patent number: 11491674
    Abstract: A method where a propeller is set into locomotion relative to a medium at least partially surrounding the propeller. An actuator induces a rotation of the propeller relative to the medium and about a rotational axis of the propeller, and the propeller converts its rotational movement into locomotion relative to the medium. The aspect ratio of at least one cross-section of the propeller is three or more. Also a helical or modifiedly helical propeller for converting rotational movement of the propeller into locomotion of the propeller relative to a medium at least partially surrounding the propeller, where the aspect ratio of at least one cross section of the propeller is three or more. And a method of producing a propeller, including the step of providing a plate extending along the helical axis, where the aspect ratio of at least one cross section of the plate is three or more.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: November 8, 2022
    Assignee: Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften E.V.
    Inventors: Tian Qiu, Peer Fischer
  • Publication number: 20220324893
    Abstract: The present invention relates to means and methods for conjugating/attaching target molecules such as proteins to a label and/or carrier. Specifically, the present invention provides a complex comprising a metal cation coordinating (i) nitrate as a metal cation ligand and (ii) a metal cation chelating domain comprising a chelating ligand and a label and/or carrier. This complex can be used for attaching a label and/or a carrier to a target molecule, preferably a protein. The attachment of the label or carrier via the complex of the invention involves the replacement of the metal cation ligand with a coordinating group of the target molecule so that a product complex with the target molecule as primary ligand in the coordination sphere of the metal cation is formed. Accordingly, the present invention also provides for uses and methods involving the attachment of a label and/or carrier to a target molecule.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 13, 2022
    Applicants: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Universität Heidelberg
    Inventors: Amelie S. BENK, Lucia T. BENK, Seraphine WEGNER, Peter COMBA, Joachim P. SPATZ
  • Publication number: 20220315942
    Abstract: The present invention relates to transgenic plants with altered photorespiration and improved CO2 fixation as well as a method of producing said transgenic plants. Particularly, the transgenic plants show an improved growth rate, productivity and energy conversion efficiency. This method can be successfully applied to many agricultural crop plants with nutritional and medicinal uses.
    Type: Application
    Filed: August 5, 2020
    Publication date: October 6, 2022
    Applicants: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Heinrich-Heine-Universität Düsseldorf
    Inventors: Lennart Schada Von Borzyskowski, Tobias Jürgen Erb, Andreas Paul Michael Weber, Marc-Sven Roll
  • Publication number: 20220306670
    Abstract: The present invention relates to means and methods for conjugating/attaching target molecules such as proteins to a label and/or carrier. Specifically, the present invention provides a complex comprising a metal cation coordinating (i) a metal cation ligand being a carbonate selected from CO32? and HCO3— and (ii) a metal cation chelating domain comprising a chelating ligand and a label and/or carrier. This complex can be used for attaching a label and/or a carrier to a target molecule, preferably a protein. The attachment of the label or carrier via the complex of the invention involves the replacement of the metal cation ligand with a coordinating group of the target molecule so that a product complex with the target molecule as primary ligand in the coordination sphere of the metal cation is formed. Accordingly, the present invention also provides for uses and methods involving the attachment of a label and/or carrier to a target molecule.
    Type: Application
    Filed: June 18, 2020
    Publication date: September 29, 2022
    Applicants: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Universität Heidelberg
    Inventors: Amelie S. BENK, Franziska SCHENK, Seraphine WEGNER, Peter COMBA, Joachim P. SPATZ
  • Patent number: 11441110
    Abstract: The present invention relates in a first aspect to a plug flow tubular bioreactor having an integral or multi-part tube adapted for cultivation, and, optionally, infection, viral transduction, or transfection of eukaryotic cells. In a further aspect, the present invention relates to a plug flow tubular bioreactor system comprising the plug flow tubular bioreactor according to the present invention. Further, the present invention relates to a method for preparing virus particles, vectors, cells or other molecules including toxic molecules using the plug flow tubular bioreactor or the system according to the present invention. Finally, the present invention relates to the use of a plug flow tubular bioreactor for the preparation of virus particles, vectors including viral vectors, cells including modified cells or other molecules including toxic molecules.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: September 13, 2022
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Felipe Tapia, Yvonne Genzel, Udo Reichl
  • Patent number: 11433323
    Abstract: The present invention relates to a device for separation of plasma or serum from a blood sample from a small blood volume (e.g. capillary blood). The device comprises a separation member, an extraction member and a housing. The extraction member comprises a base and one or more microstructures protruding from and being integrally formed with said base, wherein said one or more microstructures are configured to extract plasma or serum from said separation member by capillary forces. The present invention further provides methods for separating plasma or serum using the device according to the present invention. Similarly, also methods for analyzing one or more proteins and/or metabolites contained in plasma or serum that is separated using a device according to the present invention are provided.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: September 6, 2022
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V
    Inventor: David Gomez Varela
  • Publication number: 20220278233
    Abstract: The invention relates to a DEPFET comprising: a semiconductor substrate (100) of a first conduction type, which has a first main surface (101) and a second main surface (102), which are opposite one another; a source terminal region (1s) of a second conduction type on the first main surface (101); a drain terminal region (1d) of a second conduction type; a channel region (10), which is arranged between the source terminal region (1s) and the drain terminal region (1d); a gate electrode (11), which is separated from the channel region (10) by a gate insulator (6); a rear activation region (104) of a second conduction type, which is formed on the second main surface (102); and a substrate doping increase region (2) of a first conduction type, which is formed at least under the source terminal region (1s) and under the channel region (10), the substrate doping increase region (2) having a signal charge control region (20) of the first conduction type below the gate electrode (11), in which signal charge control
    Type: Application
    Filed: May 6, 2020
    Publication date: September 1, 2022
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Alexander Bähr, Peter Lechner, Jelena Ninkovic, Rainer Richter, Florian Schopper, Johannes Treis
  • Publication number: 20220275350
    Abstract: The invention relates to a modular polypeptide comprising a first partial effector sequence comprising a first part of a circular permutated halotag protein connected to a sensor module sequence, which is connected to a second part of a circular permutated halotag protein. The sensor module is a single polypeptide or a polypeptide pair capable of undergoing conformational change from a first confirmation to a second confirmation depending on the presence or concentration of an analyte compound. The modular peptide is catalytically active in response to an environmental stimulus or in response to the sensor pair interacting. The invention further relates to nucleic acid sequences encoding the modular polypeptide, and to kits comprising same.
    Type: Application
    Filed: April 16, 2020
    Publication date: September 1, 2022
    Applicant: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E. V.
    Inventors: Julien HIBLOT, Magnus HUPPERTZ, Kai JOHNSSON, Wilhelm JONAS
  • Publication number: 20220220164
    Abstract: The present invention relates to an expression system for a genetically encoded protein synthesis inhibitor containing RNA N-glycosidase activity split into two components. The expression system can be combined with genetic targeting systems to achieve cell- and/or tissue-type-specific and/or temporally-specific control of protein synthesis in a host, particularly in a mammalian host.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 14, 2022
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Erin M. SCHUMAN, Maximilian HEUMÜLLER, Caspar GLOCK
  • Patent number: 11351497
    Abstract: The invention relates to a method for separating chlorine from a gaseous anode outlet stream mass flow of an electrochemical cell reactor. In a first aspect, the method makes use of an absorption step, wherein an anode outlet stream mass flow of the electrochemical cell reactor is exposed to an organic solvent being essentially immiscible with water for achieving an exergy-efficient separation of chlorine and hydrogen chloride. In a further aspect, the method makes use of absorption step, wherein the anode outlet stream mass flow is exposed to an ionic liquid, wherein the hydrogen chloride is dissolved in said ionic liquid, thereby forming a gas flow containing essentially chlorine and a solution mass flow comprising the ionic liquid and the hydrogen chloride. The hydrogen chloride is desorbed from the solution mass flow in a desorption step.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: June 7, 2022
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Simon Bechtel, Tanja Vidakovic-Koch, Kai Sundmacher
  • Patent number: 11345724
    Abstract: The present invention relates to a compound of formula (I), wherein X is C?O, C?S or B—OH; Y is an electrophile and Z is a leaving group, or Y?Z is an electrophile; R1 comprises or consists of (a) (i) a first group binding to a proteolytic site of a proteasome, the first group being bound to X; and (ii) optionally a second group enhancing delivery; or (b) a group binding between subunits ?1 and ?2 of a proteasome; R2 and R3 are independently selected from H, methyl, methoxy, ethyl, ethenyl, ethynyl and cyano, wherein methyl and ethyl may be substituted with OH or halogen.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: May 31, 2022
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Ashwin Chari, Holger Stark, Jil Schrader, Fabian Henneberg
  • Patent number: 11342645
    Abstract: A non-reciprocal quantum device that comprises a first terminal and a second terminal, a transmission structure connected between the first and second terminals and configured to transmit microscopic particles in at least a partially phase-coherent manner from the first terminal to the second terminal and possibly from the second terminal to the first terminal, wherein a time-reversal symmetry of the transmission of the particles is broken with respect to at least a portion of the transmission structure; wherein the time-reversal symmetry is broken in such a way that the transmission structure comprises a higher transmission probability for particles moving in a first direction from the first terminal to the second terminal than in a second direction from the second terminal to the first terminal.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: May 24, 2022
    Assignee: Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften E.V.
    Inventor: Jochen Mannhart
  • Publication number: 20220154220
    Abstract: The present invention relates to compounds suitable to increase precise genome editing efficiency in a eukaryotic target cell or target organism. Thus, the present invention can be applied in gene therapy.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 19, 2022
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Stephan RIESENBERG, Tomislav MARICIC
  • Publication number: 20220153797
    Abstract: The current disclosure relates to methods for treating ovarian cancer based on specific antigen expression of the cancer. Furthermore, the expressed antigen may be used in immunotherapeutic methods for treatment of the ovarian cancer. Aspects of the disclosure relate to immunotherapies targeting CT45 polypeptides, methods for treating ovarian cancer based on CT45 expression, and kits for detecting CT45 polypeptides and nucleotides.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 19, 2022
    Applicants: The University of Chicago, Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E. V.
    Inventors: Ernst Lengyel, Matthias Mann, Marion Curtis, Fabian Coscia
  • Publication number: 20220129701
    Abstract: The invention relates to a system for detecting objects in a digital image. The system comprises a neural network which is configured to generate candidate windows indicating object locations, and to generate for each candidate window a score representing the confidence of detection. Generating the scores comprises: generating a latent representation for each candidate window, updating the latent representation of each candidate window based on the latent representation of neighboring candidate windows, and generating the score for each candidate window based on its updated latent representation The invention further relates to a system for rescoring object detections in a digital image and to methods of detecting objects and rescoring objects.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 28, 2022
    Applicants: TOYOTA MOTOR EUROPE, MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Daniel OLMEDA REINO, Bernt Schiele, Jan Hendrik Hosang, Rodrigo Benenson
  • Publication number: 20220127597
    Abstract: The present invention relates to methods for producing solid supports. The present invention further provides a mixture of said solid supports for tagmentation of target DNA for DNA sequencing approaches, a corresponding kit comprising the same and methods employing said mixture of solid supports and/or kit. Specifically, methods for producing sequencing libraries and corresponding DNA sequencing methods for analyzing the generated sequencing libraries and tools used therein are provided. In particular, DNA In sequencing approaches allowing preservation of contiguity information of long DNA fragments even when using short read sequencing approaches are disclosed. A key concept of the present invention is to employ segmented barcodes, with every barcode segmented allowing for barcode error detection and correction on a segment level.
    Type: Application
    Filed: February 14, 2020
    Publication date: April 28, 2022
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Yingguang Frank CHAN, Marek KUCKA, Andreea DREAU
  • Patent number: 11311010
    Abstract: The present invention provides lignin nanoparticles containing a hydrophobic active agent and a process for the production of the lignin nanoparticles. The process involves the following steps: (i) dissolving modified lignin and a hydrophobic active agent in an organic solvent having low solubility in water; (ii) combining the solution with water and a surfactant to form a pre-emulsion; (iii) forming an emulsion from the pre-emulsion; and (iv) crosslinking the modified lignin to form the lignin nanoparticles, in which the modified lignin is lignin which is chemically modified to contain at least two functional groups suitable for polymerization and/or crosslinking.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: April 26, 2022
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V., INSTITUT FÜR BIOTECHNOLOGIE UND WIRKSTOFF-FORSCHUNG GGMBH
    Inventors: Frederik Wurm, Katharina Landfester, Doungporn Yiamsawas, Eckhard Thines, Jochen Fischer
  • Patent number: 11306118
    Abstract: The present invention relates to compounds according to general formula (I) with enhanced absorption of UV-B irradiation. The present invention also relates to an UV-B tolerant plant and a method for enhanced production of compounds according to general formula (I) in a plant or plant cell. Furthermore, the invention relates to a nucleic acid sequence SEQ-ID No. 1 encoding FPT2 catalyzing the production of compounds according to general formula (I). The invention further relates to compositions comprising compounds according to general formula (I). Furthermore, the invention relates to a method of conferring UV-B tolerance to a plant as well as an UV-B tolerant plant comprising the nucleic acid sequence SEQ-ID No. 1 encoding FPT2 catalyzing the production of compounds according to general formula (I).
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: April 19, 2022
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.
    Inventors: Alisdair R. Fernie, Takayuki Tohge, Regina Wendenburg, Hirofumi Ishihara, Ronan Sulpice, Mark Stitt