Patents Assigned to Max-Planck-Gesellschaft zur Forderung der Wissenschaften
  • Publication number: 20200166699
    Abstract: A hollow-core photonic crystal fiber (HC-PCF)(10) for guiding at least one mode of a light field(1) along a mode guiding section(11) of the HC-PCF(10), comprises an outer jacket(12), an inner cladding(13) and a hollow core(14), which extend along the HC-PCF(10), wherein the inner clad-ding(13) is arranged on an interior surface of the outer jacket(12) and comprises anti-resonant structures(15) surrounding the hollow core(14), and the hollow core(14) has a mode guiding core diameter(d) provided along the mode guiding section of the HC-PCF(10), and wherein at least one fiber end (16) of the HC-PCF(10) has a light field coupling section(17) in which the hollow core(14) is tapered over an axial coupling section length from a fiber end core diameter(D) at the at least one fiber end (16) to the mode guiding core diameter(d). Furthermore, methods of using the HC-PCF and manufacturing the HC-PCF are described.
    Type: Application
    Filed: May 7, 2018
    Publication date: May 28, 2020
    Applicant: Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V
    Inventors: Sebastian BAUERSCHMIDT, Patrick Sebastian UEBEL, Philip St. J. RUSSELL
  • Publication number: 20200165279
    Abstract: The present invention relates to a compound represented by the formula (E) which is useful for treating or preventing melanoma.
    Type: Application
    Filed: May 11, 2018
    Publication date: May 28, 2020
    Applicants: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V., LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN, GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN
    Inventors: Dorothea BECKER, Thomas M. JOVIN, Christian GRIESINGER, Andrei LEONOV, Sergey RYAZANOV, Armin GIESE, Tiago F. OUTEIRO, Diana F. LAZARO, Michael P. SCHÖN, Margarete SCHÖN
  • Patent number: 10633656
    Abstract: Double-stranded RNA (dsRNA) induces sequence-specific post-transcriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 19-23 nt short RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3? ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the produced siRNP complex.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: April 28, 2020
    Assignees: MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E.V., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, Whitehead Institute for Biomedical Research, UNIVERSITY OF MASSACHUSETTS
    Inventors: Thomas Tuschl, Sayda Mahgoub Elbashir, Winfried Lendeckel
  • Publication number: 20200115419
    Abstract: The invention relates to newly characterized light-inducible inward proton pumps and their use in medicine, their utility as optogenetic tools, nucleic acid constructs encoding same, expression vectors carrying the nucleic acid construct, cells comprising said nucleic acid construct or expression vector, and their respective uses.
    Type: Application
    Filed: April 11, 2018
    Publication date: April 16, 2020
    Applicant: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Ernst Bamberg, Valentin Gordeliy, Thomas Mager, Vitaly Shevchenko
  • Publication number: 20200096682
    Abstract: A mirror includes a carrier, a reflecting layer disposed above a main face of the carrier, and a transparent layer disposed above the reflective layer. The carrier includes a base body, and the base body includes one or more of a material comprising a density in a range from 0.1 to 1.0 g/cm3, a porous material, a foamed material, a material comprising a structure containing closed cells, a material comprising a honeycomb structure, or a structure containing carbon fibers.
    Type: Application
    Filed: December 21, 2017
    Publication date: March 26, 2020
    Applicants: MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E.V., MEDIA LARIO S.R.L.
    Inventors: Masahiro TESHIMA, Razmik MIRZOYAN, Guiseppe VALSECCHI, Robert BANHAM
  • Publication number: 20200093084
    Abstract: The present invention relates to a method for reducing the competitive fitness of an organism hemizygous for a transgenic locus compared to the organism homozygous for the transgenic locus comprising the steps of: (a) reducing the expression of a haploinsufficient gene in the organism, wherein said reduction is conveyed by a transgenic locus in the organism; and (b) rescuing the reduced expression in the organism, wherein said rescue is conveyed by the same transgenic locus in the organism, yielding an organism which is less competitively fit if hemizygous for the transgenic locus than if homozygous for the transgenic locus.
    Type: Application
    Filed: August 12, 2019
    Publication date: March 26, 2020
    Applicant: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Guy Reeves, Floyd Reed
  • Patent number: 10596272
    Abstract: The present invention relates to well-defined synthetic saccharides of general formula (I) that are related to the repeating unit of Streptococcus pneumoniae serotype 5 capsular polysaccharide and conjugates thereof. The conjugates and pharmaceutical compositions containing said conjugates are useful for prevention and/or treatment of diseases associated with Streptococcus pneumoniae, and more specifically against diseases associated with Streptococcus pneumoniae serotype 5. Furthermore, the synthetic saccharides of general formula (I) are useful as marker in immunological assays for detection of antibodies against Streptococcus pneumoniae bacteria.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: March 24, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Chakkumkal Anish, Marilda Lisboa, Christopher Martin, Claney Lebev Pereira, Peter H. Seeberger, Naeem Khan
  • Patent number: 10588962
    Abstract: The present invention relates to the field of synthesizing and biologically evaluating of a novel class of carbohydrate-based vaccines. The new vaccines consist of a multi-modular structure which allows applying the vaccine to a whole variety of pathogenes. This method allows preparing vaccines against all pathogens expressing immunogenic carbohydrate antigens. As conjugation of antigenic carbohydrates to proteins is not required the conjugate vaccine is particularly heat stable. No refrigeration is required, a major drawback of protein-based vaccines.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: March 17, 2020
    Assignees: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., UNIVERSITÄTSSPITAL BASEL
    Inventors: Peter H. Seeberger, Pierre Stallforth, Gennaro De Libero, Marco Cavallari
  • Patent number: 10579684
    Abstract: A computer-implemented method for determining a relevance of a node in a network. A digital representation of a local neighborhood structure of the node in the network is obtained in a computer-readable non-volatile memory. A numerical value characteristic of the node's relevance is determined, and output to a user. The numerical value is determined based on the neighborhood structure of the node.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: March 3, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventor: Glenn Lawyer
  • Patent number: 10573201
    Abstract: The present invention relates to a method of producing a phantom resembling a human or animal organ or tissue, the phantom comprising at least one first region having at least one tissue like property and at least one cavity having a plurality of hollow branches connected thereto, with at least some of the plurality of hollow branches being formed such that they project into the first region having tissue like properties. The invention further relates to a method of making the first structure and to a corresponding phantom.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: February 25, 2020
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Qiu Tian, Peer Fischer
  • Patent number: 10538552
    Abstract: The present invention refers to a method for binding a polycarboxylic acid to a solid phase. Further, the invention refers to a solid phase having a polycarboxylic acid immobilized thereto and methods of using the solid phase, e.g. for purifying His-tagged recombinant polypeptides.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: January 21, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Dirk Goerlich, Steffen Frey
  • Publication number: 20200010513
    Abstract: The present invention relates to a nucleic acid molecule encoding a fusion protein, wherein the nucleic acid molecule comprises: (a) a first nucleic acid sequence encoding a first biosensor, wherein said first biosensor is a first molecule capable of interacting with a second molecule; (b) a second nucleic acid sequence encoding an effector-activating module, wherein the effector-activating module comprises a nucleic acid sequence encoding a first part of a protease, wherein said first part of the protease is capable of interacting with a second part of said protease to form an active form of said protease; (c) a third nucleic acid sequence encoding a third biosensor comprising a protease cleavage site, wherein the protease cleavage site is sterically occluded in the absence of a stimulus for said third biosensor and wherein the protease cleavage site becomes accessible in the presence of said stimulus.
    Type: Application
    Filed: February 23, 2017
    Publication date: January 9, 2020
    Applicants: MAX PLANCK FLORIDA INSTITUTE FOR NEUROSCIENCE, MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Hyungbae KWON, Dongmin LEE
  • Patent number: 10529137
    Abstract: Disclosed is a method including receiving visual input comprising a human within a scene, detecting a pose associated with the human using a trained machine learning model that detects human poses to yield a first output, estimating a shape (and optionally a motion) associated with the human using a trained machine learning model associated that detects shape (and optionally motion) to yield a second output, recognizing the scene associated with the visual input using a trained convolutional neural network which determines information about the human and other objects in the scene to yield a third output, and augmenting reality within the scene by leveraging one or more of the first output, the second output, and the third output to place 2D and/or 3D graphics in the scene.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: January 7, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Michael Black, Eric Rachlin, Evan Lee, Nicolas Heron, Matthew Loper, Alexander Weiss, David Smith
  • Publication number: 20190384046
    Abstract: The invention relates to a light microscope for examining microscopic objects with high throughput. The microscope comprises a light source for illuminating a measuring zone, a sample vessel, in which the microscopic objects can be successively moved into the measuring zone, and a detection device for measuring detection light, which originates from a microscopic object located in the measuring zone. According to the invention, the microscope is characterized in that the imaging means comprise a detection lens having a stationary front optics and movable focusing optics, wherein the focusing optics is arranged behind the front optics and in front of an intermediate image plane, and can be adjusted for the height adjustment of a detection plane. The invention further relates to a corresponding microscopy method.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 19, 2019
    Applicants: Carl Zeiss Microscopy GmbH, Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Helmut Lippert, Jörg Siebenmorgen, Jan Huisken, Florian Fahrbach
  • Patent number: 10501803
    Abstract: The present invention relates to a method of assessing whether a subject suffers from cancer or is prone to suffering from cancer, in particular lung cancer, comprising the measurement of the amounts of specific isoforms of GATA6 and/or NKX2-1 in a sample of said subject. Furthermore, the present invention relates to a composition for use in medicine comprising (an) inhibitor(s) of specific isoforms of GATA6 and/or NKX2-1. Additionally, the present invention relates to a kit for use in a method of assessing whether a subject suffers from cancer or is prone to suffering from cancer, in particular lung cancer.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: December 10, 2019
    Assignees: MAX-PLANCK GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V., JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN
    Inventors: Guillermo Barreto, Aditi Mehta, Indrabahadur Singh, Marten Szibor, Rajkumar Savai, Werner Seeger, Thomas Braun, Andreas Günther, Marcus Krüger
  • Publication number: 20190365708
    Abstract: The present invention relates to a vasopressin receptor 1B (V1B) antagonist for use in the treatment of depressive symptoms and/or anxiety symptoms in patients showing an elevated arginine vasopressin (AVP) level and/or an elevated copeptin level. The present invention further relates to a method for predicting the treatment response to a V1B antagonist in patients with depressive symptoms and/or anxiety symptoms.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventor: Florian Holsboer
  • Publication number: 20190366147
    Abstract: A training apparatus includes an elastic band; a device for continuously determining an actual configuration of the training apparatus during exercise, e.g. a stretch of the elastic band or a 2D or 3D position of said device; and for generating a control signal for an audio device, the control signal being at least partially based on the actual configuration of the training apparatus; and for outputting the control signal.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 5, 2019
    Applicant: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Thomas Fritz, John Dylan Haynes, Carlo Crovato
  • Patent number: 10488335
    Abstract: The present invention relates to a device, comprising at least one layer of an active material having a first optical thickness, the active material being selected so as to experience a change (i) of at least one size dimension, (ii) of the resistance, (iii) of the refractive index or (iv) combinations of two or more of the foregoing, when the active material is subjected to a change in environment, wherein at least one and preferably all of the layers of the at least one layer of the active material is composed of at least two nanosheets of the active material, with the at least two nanosheets randomly overlapping one another. The invention further relates to a nanosheet of active material and to a use of the nanosheet of the material.
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: November 26, 2019
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Katalin Szendrei-Temesi, Pirmin Ganter, Olalla Sanchez-Sobrado, Alexander Hunger, Bettina Lotsch
  • Patent number: 10472625
    Abstract: The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: November 12, 2019
    Assignees: Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften E.V., Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, University of Massachusetts
    Inventors: Thomas Tuschl, Phillip D. Zamore, Phillip A. Sharp, David P. Bartel
  • Patent number: 10464037
    Abstract: The present invention relates to a method for encapsulating a nanostructure, the method comprising the steps of: providing a substrate; forming a plug composed of plug material at said substrate; forming a nanostructure (on or) at said plug; forming a shell composed of at least one shell material on external surfaces of the nanostructure, with the at least one shell material covering said nanostructure and at least some of the plug material, whereby the shell and the plug encapsulate the nanostructure. The invention further relates to a coated nanostructure and to the use of a coated nanostructure.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: November 5, 2019
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Hyeon-Ho Jeong, Tung Chun Lee, Peer Fischer