Patents Assigned to Max-Planck-Gesellschaft zur Forderung der Wissenschaften
  • Patent number: 10864261
    Abstract: The present invention relates to a synthetic saccharide of general formula (I) that is related to Streptococcus pneumoniae serotype 2 capsular polysaccharide, a conjugate thereof and the use of said saccharide and conjugate for raising a protective immune response in a human and/or animal host. Furthermore, the synthetic saccharide of general formula (I) is useful as marker in immunological assays for detection of antibodies against Streptococcus pneumoniae type 2 bacteria.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: December 15, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Peter H. Seeberger, Claney Lebev Pereira, Chakkumkal Anish, Naeem Khan, Madhu Emmadi
  • Publication number: 20200376470
    Abstract: The present disclosure refers to increasing the catalytic efficiency of Weyl semimetals by subjecting Weyl semimetals to an external magnetic field of greater than 0 T, for example greater than 0.1 T. In a preferred embodiment of the present disclosure the Weyl semimetal is selected from the group consisting of NbP, TaP, NbAs and TaAs.
    Type: Application
    Filed: February 6, 2019
    Publication date: December 3, 2020
    Applicants: MAX PLANCK GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN EV, JAWAHARLAL NEHRU CENTRE FOR ADVANCED SCIENTIFIC RESEARCH (JNCASR)
    Inventors: Chintamani Nagesa Ramachandra RAO, Claudia FELSER, Catherine Ranjitha RAJAMATHI, Nitesh KUMAR, Uttam GUPTA
  • Publication number: 20200362312
    Abstract: The invention relates to a method of culturing an epithelial cell on a solid surface.
    Type: Application
    Filed: January 18, 2019
    Publication date: November 19, 2020
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Francesco BOCCELLATO, Thomas F. MEYER
  • Patent number: 10837062
    Abstract: A method of treating a human patient with depressive and/or anxiety symptoms which includes administering an effective amount of a V1B receptor antagonist and/or CRHR1 antagonist to the patient in need thereof, wherein the patient's genome has certain polymorphoric variants.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 17, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Florian Holsboer, Bertram Müller-Myhsok
  • Patent number: 10829515
    Abstract: The present invention relates in a first aspect to a method for the purification of biological macromolecular complexes. Typically, no chromatography steps are applied. That is, the present invention relates to a method for the purification of biological macromolecular complexes Furthermore, the present invention relates to a method for crystallization of biological macromolecular complexes comprising the step of purification as described followed by crystallization in a reservoir solution containing a water-soluble polymer. Furthermore, purified biological macromolecular complexes obtainable by the method according to the present invention are provided as well as crystallized biological macromolecular complexes. Finally, a method for determining the suitability of a candidate compound for inhibiting the 20S proteasome of an individual is provided.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: November 10, 2020
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Ashwin Chari, Holger Stark, Jil Schrader, Fabian Henneberg
  • Patent number: 10828358
    Abstract: The present invention relates to immunogenic compositions and their use in the prevention or treatment of diseases or disorders caused by or associated with Helicobacter pylori, in particular H. pylori infection and gastroduodenal disorders caused by H. pylori. The present invention further relates to methods of detecting H. pylori infection in a subject.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 10, 2020
    Assignees: TECHNISCHE UNIVERSITÄT MÜNCHEN, MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Tobias Kruse, Daniel Hornburg, Markus Gerhard, Matthias Mann, Felix Meissner
  • Patent number: 10822401
    Abstract: The marginal zone (MZ) and B1 subsets of B cells, which differ from conventional follicular (FO) B cells both developmentally and functionally, are involved in early responses to infectious pathogens and the production of self-reactive antibodies. A novel gene, mzb1, is expressed at high levels in MZ and B1 B cells but at low level, if at all, in FO B cells. MZB1 is involved in the regulation of proliferation, BCR-mediated signal transduction, and antibody production in B cells. Inhibitors, activators and enhancers of MZB1 expression or activity can be used as immune modulators for research and therapeutic purposes.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: November 3, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Rudolf Grosschedl, Henrik Flach, Sola Kim, Marlena Duchniewicz, Bernadette Schreiner, Marc Rosenbaum
  • Publication number: 20200339668
    Abstract: A cross-neutralizing monoclonal antibody that specifically recognizes a cross-reactive epitope of the lipopolysaccharide (LPS) antigen structure of Klebsiella pneumoniae, which is an O3b epitope, cross-reacting with an O3a epitope and an O3 epitope, wherein the antibody is characterized by specific CDR sequences or VH and VL sequences.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 29, 2020
    Applicants: X4 Pharmaceuticals (Austria) GmbH, Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V.
    Inventors: Valeria SZIJÁRTO, Gábor NAGY, Luis GUACHALLA, Katharina RAMONI, Adriana BADARAU, Eszter NAGY, Tim ROLLENSKE, Hedda WARDEMANN, Irina MIRKINA
  • Patent number: 10794908
    Abstract: The present invention discloses functionalized nanomembranes, a method for preparation and their use. The functionalized nanomembrane comprises a) a first layer comprising a nanomaterial, b) a second layer comprising a biorepulsive material, the second layer being attached to at least one side of the first layer, and c) affinity groups, attached to the second layer.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 6, 2020
    Assignees: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Quantifoil Micro Tools GmbH
    Inventors: Andreas Terfort, Daniel Rhinow, Andrey Turchanin
  • Publication number: 20200280159
    Abstract: A broadband light source device for creating broadband light pulses includes a hollow-core fiber and a pump laser source device. The hollow-core fiber is configured to create the broadband light pulses by an optical non-linear broadening of pump laser pulses. The hollow-core fiber includes a filling gas, an axial hollow light guiding fiber core configured to support core modes of a guided light field, and an inner fiber structure surrounding the fiber core and configured to support transverse wall modes of the guided light field. The pump laser source device is configured to create and provide the pump laser pulses at an input side of the hollow-core fiber. The transverse wall modes include a fundamental transverse wall mode and second and higher order transverse wall modes.
    Type: Application
    Filed: May 15, 2020
    Publication date: September 3, 2020
    Applicant: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Patrick Sebastian UEBEL, Philip St. J. RUSSELL, Sebastian Thomas BAUERSCHMIDT
  • Patent number: 10759848
    Abstract: A cross-neutralizing monoclonal antibody that specifically recognizes a cross-reactive epitope of the lipopolysaccharide (LPS) antigen structure of Klebsiella pneumoniae, which is an O3b epitope, cross-reacting with an O3a epitope and an O3 epitope, wherein the antibody is characterized by specific CDR sequences or VH and VL sequences.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 1, 2020
    Assignees: ARSANIS Biosciences GmbH, Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V.
    Inventors: Valeria Szijárto, Gábor Nagy, Luis Guachalla, Katharina Ramoni, Adriana Badarau, Eszter Nagy, Tim Rollenske, Hedda Wardemann, Irina Mirkina
  • Patent number: 10755464
    Abstract: Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co-registering of the measured object scan data (S).
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: August 25, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Michael Black, David L. Hirshberg, Matthew Loper, Eric Rachlin, Alex Weiss
  • Patent number: 10739334
    Abstract: A capsule suitable for oxygen and temperature sensing contains: i) at least one first sensitizer compound being capable of energy transfer to triplet oxygen, ii) at least one compound being capable of reacting with and inactivating singlet oxygen, iii) at least one second sensitizer compound being capable of absorbing radiation at a second frequency v2 and of emitting light at a fourth frequency v4, iv) at least one emitter compound, wherein the at least one second sensitizer compound is capable of transferring energy to the at least one emitter compound and wherein the at least one emitter compound, after obtaining energy transferred from the at least one second sensitizer compound, is capable of emitting light at a third frequency v3, wherein the following equation is fulfilled: v3>v2, wherein the upper energy limit of the first triplet energy band of the first sensitizer compound is lower than the lower energy limit of the second triplet energy band of the second sensitizer compound and lower than the
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: August 11, 2020
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Katharina Landfester, Yury Avlasevich, Dzmitry Busko, Frederik Wurm, Stanislav Balouchev
  • Patent number: 10711244
    Abstract: The present invention relates to a method for producing mammalian neural plate border stem cells (NPBSCs), comprising: (a) differentiation of mammalian pluripotent stem cells by (a-i) culturing mammalian pluripotent stem cells in pluripotent stem cell medium for about 24 to about 96 hours, wherein the pluripotent stem cell medium comprises: (i) an inhibitor of the activin/TGF-? signalling pathway; (ii) an inhibitor of the BMP signalling pathway; (iii) an activator of the canonical WNT signalling pathway; and (iv) an activator of the Hedgehog signalling pathway; subsequently (a-ii) culturing the cells obtained in step (a-i) for about 24 to about 96 hours in a neural medium, wherein the neural medium comprises: (i) an inhibitor of the Activin/TGF-? signalling pathway; (ii) an inhibitor of the BMP signalling pathway; (iii) an activator of the canonical WNT signalling pathway; and (iv) an activator of the Hedgehog signalling pathway; subsequently (a-iii) culturing the cells obtained in step (a-ii) for about 24 to
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: July 14, 2020
    Assignee: MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.
    Inventors: Hans R. Schoeler, Jared L. Sterneckert, Michael Glatza, Peter Reinhardt
  • Patent number: 10703735
    Abstract: The invention provides novel 4-phenyl-coumarin derivatives, processes for their preparation and uses thereof as specific mitochondrial RNA polymerase inhibitors for the treatment of cancer.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: July 7, 2020
    Assignees: Lead Discovery Center GmbH, Max Planck Gesellschaft zur Förderung der Wissenschaften e. V.
    Inventors: Raffaella Di Lucrezia, Tim Bergbrede, Peter Nussbaumer, Uwe Koch, Bert Klebl, Axel Choidas, Anke Unger, Nils-Göran Larsson, Maria Falkenberg-Gustafsson, Claes M. Gustafsson
  • Patent number: 10688169
    Abstract: The present invention relates to synthetic saccharides of general formula (I): V*—[Ux+2—Ux+1—Ux]n—V—O-L-NH2 that are related to carbapenem-resistant Klebsiella pneumoniae capsular polysaccharide and conjugates thereof. Said conjugates and pharmaceutical composition containing said conjugates are useful for prevention and/or treatment of diseases associated with carbapenem-resistant Klebsiella pneumoniae. Furthermore, the synthetic saccharides of general formula (I): V*—[Ux+2—Ux+1—Ux]n—V—O-L-NH2 are useful as marker in immunological assays for detection of antibodies against carbapenem-resistant Klebsiella pneumoniae bacteria.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: June 23, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Peter H. Seeberger, Claney Lebev Pereira, Guozhi Xiao, Naeem Khan, Chakkumkal Anish
  • Publication number: 20200193225
    Abstract: The invention relates to a system for detecting objects in a digital image. The system comprises a neural network which is configured to generate candidate windows indicating object locations, and to generate for each candidate window a score representing the confidence of detection. Generating the scores comprises: generating a latent representation for each candidate window, updating the latent representation of each candidate window based on the latent representation of neighboring candidate windows, and generating the score for each candidate window based on its updated latent representation The invention further relates to a system for rescoring object detections in a digital image and to methods of detecting objects and rescoring objects.
    Type: Application
    Filed: April 28, 2017
    Publication date: June 18, 2020
    Applicants: Toyota Motor Europe, Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Daniel OLMEDA REINO, Bernt SCHIELE, Jan Hendrik HOSANG, Rodrigo BENENSON
  • Patent number: 10679046
    Abstract: Disclosed is a method including receiving an input image including a human, predicting, based on a convolutional neural network that is trained using examples consisting of pairs of sensor data, a corresponding body shape of the human and utilizing the corresponding body shape predicted from the convolutional neural network as input to another convolutional neural network to predict additional body shape metrics.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: June 9, 2020
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Michael Black, Eric Rachlin, Nicolas Heron, Matthew Loper, Alexander Weiss, Xiaochen Hu, Theodora Hinkle, Martin Kristiansen
  • Patent number: 10675718
    Abstract: A method for reversibly attaching a phase changing metal to an object, the method comprising the steps of: providing a substrate having at least one surface at which the phase changing metal is attached, heating the phase changing metal above a phase changing temperature at which the phase changing metal changes its phase from solid to liquid, bringing the phase changing metal, when the phase changing metal is in the liquid phase or before the phase changing metal is brought into the liquid phase, into contact with the object, permitting the phase changing metal to cool below the phase changing temperature, whereby the phase changing metal becomes solid and the object and the phase changing metal become attached to each other, reheating the phase changing metal above the phase changing temperature to liquefy the phase changing metal, and removing the substrate from the object, with the phase changing metal separating from the object and remaining with the substrate.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: June 9, 2020
    Assignee: Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V.
    Inventors: Zhou Ye, Guo Zhan Lum, Metin Sitti
  • Patent number: 10677652
    Abstract: A method and apparatus is provided for implementing a parametric down-conversion (PDC)-based calibration comprising calibrating a measuring instrument; disposing a pinhole at a position of a light-emitting sample for which the measuring instrument needs to be calibrated; irradiating a nonlinear crystal with a light source; setting the nonlinear crystal by ensuring a phase-matching wavelength of the nonlinear crystal is set at one boundary of a desired bandwidth; acquiring one or more PDC spectrums by the measuring instrument; obtaining peak values and their corresponding wavelengths from each acquired spectrum; and obtaining a response function based on the peak values and corresponding wavelengths.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: June 9, 2020
    Assignees: University of Ottawa, Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V., Friedrich-Alexander-Universitaet Erlangen-Nuernberg
    Inventors: Samuel Lemieux, Mathieu Manceau, Robert W. Boyd, Gerd Leuchs, Maria V. Chekhova