Patents Assigned to MaxLinear, Inc.
  • Patent number: 9049491
    Abstract: A network device may receive a signal from a headend, wherein a bandwidth of the received signal spans from a low frequency to a high frequency and encompasses a plurality of sub-bands. The network device may determine, based on communication with the headend, whether one of more of the sub-bands residing above a threshold frequency are available for carrying downstream data from the headend to the circuitry. The network device may digitize the signal using an ADC operating at a sampling frequency. The sampling frequency may be configured based on a result of the determining. When the sub-band(s) are available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively high frequency. When the sub-band(s) are not available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively low frequency.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: June 2, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher, Sridhar Ramesh
  • Patent number: 9042463
    Abstract: A method and system for combining a guard interval and a corresponding portion of a received symbol, whereby when receiving a signal that contains the symbol with a guard interval corresponding to the symbol, a portion of the guard interval that is free from inter-symbol interference may be extracted, and the extracted portion of the guard interval may be combined with the corresponding portion of the symbol. The extracting and combining may be done after a determining, based on a delay profile provided by the received signal, that a delay spread is smaller than a predetermined channel delay. The delay spread may be determined by filtering an instantaneous delay spread associated with the received signal. The filtering may be performed using a 1-tap infinite impulse response low-pass filter. The low-pass filter may include a time constant that is the inverse of a maximum Doppler frequency shift.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: May 26, 2015
    Assignee: MAXLINEAR, INC.
    Inventors: Mingrui Zhu, Arun Kedambadi, Seung Chul Hong, Anand Anandakumar
  • Patent number: 9043855
    Abstract: A coupling device for use in a hybrid fiber coaxial (HFC) network may be configured to disable an upstream path through it when there is only noise incident on the upstream path, and enable the upstream path through it when a desired transmission from a cable modem downstream of the coupling device is incident on the upstream path. The coupling device may be a trunk amplifier, a distribution amplifier, a splitter, or the like. The coupling device may comprise a single upstream interface coupled to a plurality of downstream interfaces. The enabling and/or disabling may be in response to a signal strength indicated by the SSI being below a threshold and/or in response to one or more control messages indicating whether any downstream cable modem is, or will be, transmitting.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: May 26, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Sridhar Ramesh, Timothy Gallagher
  • Patent number: 9042851
    Abstract: One or more circuits may comprise at least one first-type analog-to-digital converter (ADC) and at least one second-type ADC. The circuit(s) may be operable to receive a plurality of signals, each of which may comprise a plurality of channels. The circuit(s) may be operable to digitize a selected one or more of the channels. Which, if any, of the selected channels are digitized via the at least one first-type ADC and which, if any, of the selected channels are digitized via the at least one second-type ADC, may be based on which of the plurality of channels are the selected channels and/or based on power consumption of the circuit(s). A bandwidth of each first-type ADC may be on the order of the bandwidth of one of the received signals. A bandwidth of each second-type ADC may be on the order of the bandwidth of one of the plurality of channels.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: May 26, 2015
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 9042433
    Abstract: Methods and apparatus for power control in a communications device are described. Bonding of channels in a modem may be dynamically adjusted responsive to user activity or demand for bandwidth. Bonded channel configurations may be adjusted to single channel configurations for low power operation. Modem configuration may be dynamically adjusted so as to maintain only required synchronization and system information to facilitate rapid data transfer resumption upon demand.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 26, 2015
    Assignee: MAXLINEAR, INC.
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 9026118
    Abstract: A satellite reception assembly may receive signals on a block of frequencies that encompasses channels of one or more wireless networks. The satellite reception assembly may convey information about signals received on the block of frequencies to a centralized location which may utilize the information to determine characteristics, such as coverage area and/or usage, of the wireless network(s). Additionally or alternatively, such information from a plurality of satellite reception assemblies may be aggregated and made available to third parties which may use the aggregate information, in combination with knowledge about the wireless network(s), to determine characteristics of the wireless network(s).
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: May 5, 2015
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 9020054
    Abstract: Systems and methods for adjusting timing in a communication system, such as an OFDM system are described. In one implementation an error signal is generated to adjust the timing of a variable rate interpolator so as to adjust FFT timing. The error signal may be based on detection of significant peaks in an estimate of the impulse response of the channel, with the peak locations being tracked over subsequent symbols and the system timing adjusted in response to changes in the peaks.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 28, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Seung-Chul Hong, Anand Anandakumar, Curtis Ling
  • Patent number: 9014649
    Abstract: A system may comprise a plurality of signal processing paths, a bin-wise combiner, an inverse transformation block, and a DAC. Each signal processing path may comprise a transformation block that is operable to transform a first time-domain digital signal to an associated frequency-domain signal having a plurality of subband signals. The bin-wise combiner may be operable to combine corresponding subband signals of the plurality of signal processing paths. The inverse transformation block may be operable to transform output of the bin-wise combiner to an second time-domain signal. The DAC may be operable to converts the second time-domain signal to a corresponding analog signal.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: April 21, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Anand K. Anandakumar, Curtis Ling, Sugbong Kang
  • Patent number: 9008119
    Abstract: An integrated circuit may comprise a tuner operable to digitize a band of frequencies comprising a plurality of television channels, a crossbar operable to select one or more of the plurality of television channels output by the tuner, a plurality of demodulators operable to receive the selected one or more television channels from the crossbar and demodulate the selected one or more television channels to recover a plurality of transport streams, a transport module operable to multiplex the plurality of transport streams into a single packet stream, and a framer operable to: encapsulate packets of the plurality of transport streams into transport stream frames of a serial datastream, and insert filler frames into the serial datastream after every Nth transport stream frame of the serial datastream, where N is an integer.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: April 14, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Anand Anandakumar, Serdar Yilmaz, Chi-Foun Kuen, Ravi Aripirala
  • Patent number: 9008571
    Abstract: One or more circuits of a satellite reception assembly may be operable to receive a satellite signal, recover content carried in the satellite signal, and broadcast a signal carrying the content for reception by one or more mobile devices. The satellite reception assembly may be mounted to the residence of a satellite subscriber. The signal carrying the content may be frequency locked to a reference signal that is available to the satellite reception assembly and to one or more other satellite reception assemblies. The reference signal may be a GNSS signal. The one or more circuits may communicate with the one or more mobile devices to provide a key to the one or more mobile devices, where the key is required for descrambling and/or decryption of the content carried in said signal.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: April 14, 2015
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 8990864
    Abstract: A signal receiver may be configured to determine when signal generation changes affecting signals being received by the signal receiver may cause performance related changes; and to modify its (the signal receiver) configuration to handle the performance related changes. In this regard, the modifying of configuration may comprise determining characteristics of performance related changes, and controlling operations of the signal receiver based on the determined characteristics of the performance related changes. The performance related changes may comprise amplitude glitches, phase glitches, and/or bit or packet errors. The signal generation changes may comprise channel-to-frequency reassignment. Controlling operations of the signal receiver based on determined characteristics of the performance related changes may comprise adjusting such parameters as amplification gain and/or tracking loop bandwidth, and/or determining whether (or not) to ignore bit/packet errors—i.e. not reacquire (e.g.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: March 24, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Anand Anandakumar, Ioannis Spyropoulos, Meetul Parikh
  • Patent number: 8981982
    Abstract: Aspects of a method and system for data converters having a transfer function with multiple operating zones. In some embodiments, an operating zone of the multiple operating zones is characterized by more stringent performance criteria than the other operating zones. Thus, such data converters may receive an input signal and generate an output signal from the input signal per the transfer function and the more stringent performance criteria in the appropriate operating zone.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: March 17, 2015
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Publication number: 20150073706
    Abstract: A mobile communication device includes, in part, a first wireless receiver adapted to determine, as it travels along a path, a multitude of positions of the mobile communication device using signals received from a primary positioning source, a second wireless receiver adapted to receive signals from one or more ambient wireless sources as the mobile communication device travels along the path, and a positioning module. An internal or external memory stores estimated positions and corresponding time references of the signals of the one or more ambient sources. The positioning module uses the data stored in the database to estimate the position of the mobile communication device when no primary positioning source signal is available. The positioning module optionally uses the data stored in the database to improve estimates of the position of the mobile communication device when primary positioning signal is available.
    Type: Application
    Filed: May 21, 2014
    Publication date: March 12, 2015
    Applicant: MaxLinear, Inc.
    Inventors: Curtis LING, Stuart Strickland
  • Patent number: 8973070
    Abstract: A wireless communication system is enhanced to allow for low-latency channel surfing and to enable a user to quickly see the content carried over a selected channel while searching channels for desired content. The techniques for reducing the channel change latency may be implemented in a transmitter, receiver, or in a combination of transmitter and receiver. The wireless communication system is optionally a DVB-H communication system. The transmitter may generate and transmit one or more auxiliary channels, where each auxiliary channel contains reduced resolution content corresponding to one or more channels. The receiver may process the one or more auxiliary channels to present the reduced resolution content while processing the full resolution channel for display. The receiver caches portions of content from one or more non-selected channels and presents the cached content when the channel is selected while concurrently searching and processing the full resolution channel content.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: March 3, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Sridhar Ramesh, Curtis Ling, Ramakrishna Akella, Brenndon Lee
  • Patent number: 8964903
    Abstract: Methods and apparatus for processing multichannel signals in a multichannel receiver are described. In one implementation, a plurality of demodulator circuits may provide a plurality of outputs to a processing module, with the processing module then simultaneously estimating noise characteristics based on the plurality of outputs and generating a common noise estimate based on the plurality of outputs. This common noise estimate may then be provided back the demodulators and used to adjust the demodulation of signals in the plurality of demodulators to improve phase noise performance.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: February 24, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 8952762
    Abstract: A clock generator includes, in part, a buffer, a peak detector and a control logic. The buffer generates a clock output signal in response to receiving a clock signal and a feedback signal that controls the gain of the buffer. If the peak detector detects that the amplitude of the output signal is higher than the upper bound of the predefined range, the gain value applied to the variable buffer is decreased. If the peak detector detects that the amplitude of the output signal is lower than the lower bound of the predefined range, the gain value applied to the variable buffer to increased. If the peak detector detects that the amplitude of the output signal is within the predefined range, no change is made to the gain value applied to the variable buffer. The control logic generates the feedback signal in response to the peak detector's output signal.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: February 10, 2015
    Assignee: MaxLinear, Inc.
    Inventor: Tomas O'Sullivan
  • Patent number: 8949907
    Abstract: Methods and systems for cross-protocol time synchronization may comprise, for example, in a premises-based network, receiving, by a root node network controller in the premises, signals that conform to one or more first communications protocols, where the signals may be received from sources external to the premises. The received signals may be bridged to conform to a second communications protocol different from the first communications protocol. The bridged signals may be communicated to one or more networked devices within the premises-based wired network, where only signals conforming to the second communications protocol may be concurrently communicated in at least two frequencies, a first in a frequency range of the first communications protocol and a second in a frequency range of the second communications protocol, the frequency range used by the first communications protocol being different from and not overlapping with the frequency range used by the second communications protocol.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: February 3, 2015
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 8938231
    Abstract: Methods and systems for femtocell positioning using low Earth orbit (LEO) satellite signals may comprise receiving an initial position of a wireless communication device (WCD) as entered by as user, service provider, or manufacturer, wherein the WCD comprises a LEO satellite signal receiver path (Rx). The WCD may be operable to provide wireless communication services to other WCDs. LEO signals may be received for determining a position of the WCD, which may be compared to a threshold radius defined by the initial position. The communication services may be enabled when the measured position is within the threshold radius. The WCD may comprise a femtocell device, a WiFi access point, or may provide cellular telephone service to the other WCDs. The position of the WCD may be measured upon powering up of the WCD, on a periodic basis, and/or when one or more motion sensors in the WCD detect motion.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: January 20, 2015
    Assignee: Maxlinear, inc.
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Publication number: 20150016557
    Abstract: An approach for Soft-output K-Best MIMO detection comprises computing an estimated symbol vector and Log-Likelihood Ratio (LLR) values for transmitted bits. The approach includes a relevant discarded paths selection process, a last-stage on-demand expansion process, and a relaxed LLR computation process. The relevant discarded paths selection process includes analyzing the K-Best paths and discarded paths at each intermediate tree level and selecting only those discarded paths for further processing that will help in LLR computation for at least one of the transmitted bits. The last-stage on-demand expansion process includes expanding K paths at the tree level 2NT?1 (NT=number of transmit antennas) on-demand to only 2K?1 lowest Partial Euclidean Distance (PED) paths at last tree level 2NT. The relaxed LLR computation scheme includes approximating LLR computations by assuming that discarded path PED is greater than or equal K-Best path PED.
    Type: Application
    Filed: January 17, 2014
    Publication date: January 15, 2015
    Applicant: MaxLinear, Inc.
    Inventors: Dimpesh PATEL, Mahdi SHABANY, Glenn GULAK
  • Patent number: 8935520
    Abstract: A device for descrambling encrypted data includes a descrambler, a secure link, and a secure element that securely transmits a control word to the descrambler in a normal operating mode. The secure element includes a first secure register, a read-only memory having a boot code, a random-access memory for storing a firmware image from an external memory, and a processor coupled to the first secure register, the read-only memory, and the random access memory. The processor executes the boot code to generate the control word, stores the control word in the first secure register, and send the stored control word to the descrambler through a secure communication link. The descrambler may include a second secure register that is connected to the first secure register through the secure link. The first and second secure registers are not scannable during a normal operation. The secure link contains buried signal traces.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: January 13, 2015
    Assignee: MaxLinear, Inc.
    Inventor: Maxime Leclercq