Patents Assigned to MaxLinear, Inc.
  • Patent number: 9344961
    Abstract: A network device (e.g., a cable modem) may support a normal mode of operation and a sleep mode of operation. While in the normal mode, a PHY of the network device may process a received signal to recover MPEG-TS packets, and convey the MPEG-TS packets to other components of the network device for further processing. While in the sleep mode, the PHY may process received MPEG-TS packets having a particular packet identifier and drop received MPEG-TS packets not having the particular packet identifier. The PHY may control transitions between the normal mode and the sleep mode in response to received signals having particular physical layer characteristics. The PHY may demodulate a received signal to recover an MPEG-TS packet; descramble portions of the MPEG-TS packet; inspect portions of the MPEG-TS packet; and control a mode of operation of the network device based on the contents of the MPEG transport stream.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: May 17, 2016
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher, Sridhar Ramesh
  • Patent number: 9337911
    Abstract: An approach for Soft-output K-Best MIMO detection comprises computing an estimated symbol vector and Log-Likelihood Ratio (LLR) values for transmitted bits. The approach includes a relevant discarded paths selection process, a last-stage on-demand expansion process, and a relaxed LLR computation process. The relevant discarded paths selection process includes analyzing the K-Best paths and discarded paths at each intermediate tree level and selecting only those discarded paths for further processing that will help in LLR computation for at least one of the transmitted bits. The last-stage on-demand expansion process includes expanding K paths at the tree level 2NT?1 (NT=number of transmit antennas) on-demand to only 2K?1 lowest Partial Euclidean Distance (PED) paths at last tree level 2NT. The relaxed LLR computation scheme includes approximating LLR computations by assuming that discarded path PED is greater than or equal K-Best path PED.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: May 10, 2016
    Assignee: MaxLinear, Inc.
    Inventors: Dimpesh Patel, Mahdi Shabany, Glenn Gulak
  • Patent number: 9337859
    Abstract: Methods and systems are provided for controlling signal processing outputs. In signal processing circuitry, searching through a plurality of quantization levels for a quantization level that matches an analog input, and when the search fails within a particular amount of time, adjusting at least a portion of an output of the signal processing circuitry. The adjusting comprises setting the at least portion of the output to a predefined value. Setting the output, or portions thereof, may comprise selecting between output of a normal processing path and output of a code generation path configured for handling search failures. Timing information may be generated for use in controlling generating of the output of the signal processing circuitry. The timing information may be used in measuring per-cycle operation time during the search through the plurality of quantization levels.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: May 10, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Xuefeng Chen, Kok Lim Chan, Eric Fogleman, Sheng Ye
  • Patent number: 9337995
    Abstract: A GNSS receiver communicates with any connectivity device, such as a WiFi device that is, in turn, in communication with a wired network having access to the DTI timing. Such connectivity devices may set their timing and frame synchronization to the DTI and thus serve as Geopositioning beacons, thereby enabling the GNSS receiver to accurately determine its position. The GNSS receiver may also use the DTI timing supplied by such a network to perform relatively long integration time so as to achieve substantially improved sensitivity that is necessary for indoor Geopositioning applications. Furthermore, the GNSS data, such as satellite orbital information, may also be propagated by such devices at high speed. By providing this data to the GNSS receivers via such connectivity devices in a rapid fashion, the GNSS receivers are enabled to receive the transmitted data associated with the satellite without waiting for the GNSS transmission from the satellites.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: May 10, 2016
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 9338661
    Abstract: A first microwave backhaul transceiver may comprise a plurality of antenna elements. The transceiver may determine atmospheric conditions between it and one or more potential link partners, and adjust a radiation pattern of the plurality of antenna elements based on the determined atmospheric conditions. A first radiation pattern of the plurality of antenna elements may correspond to a first microwave backhaul link between the first microwave transceiver and a second microwave backhaul transceiver. A second radiation pattern of the plurality of antenna elements may correspond to a second microwave backhaul link between the first microwave transceiver and a third microwave backhaul transceiver. The transceiver may adjust the radiation pattern based on characteristics of data to be transmitted, and based on a routing table it maintains.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: May 10, 2016
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 9331725
    Abstract: Methods and systems for crest factor reduction may comprise generating an original waveform, generating a distortion signal by reducing a crest factor of the original waveform, generating an error signal by subtracting out the original waveform from the distortion signal, generating a conditioned waveform by adding the error signal to the original waveform, and amplifying the conditioned waveform. The crest factor of the original waveform may be reduced based on spectral mask requirements. The crest factor of the original waveform may be reduced using a limiter. The power amplifier may comprise a programmable gain amplifier (PGA). The distortion signal may be generated based on a PGA model and/or a predistortion model. A signal from an output of the PA may be fed back to the PGA model. The PGA model may be dynamically configured. The crest factor of the original waveform may be reduced in an analog domain and/or a digital domain. The error signal may be filtered utilizing a distortion shaping filter.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: May 3, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Ramesh Sridhar, Timothy Gallagher, Ali Shahed hagh Ghadam, Shantha Murthy Prem Swaroop
  • Patent number: 9326101
    Abstract: An Internet protocol low noise block downconverter (IP LNB) assembly, which may be within a satellite reception assembly, may be operable to determine location information and/or time information of the IP LNB assembly, such as via a global navigation satellite system (GNSS) module in the IP LNB assembly. The IP LNB assembly may provide services based on the determined location information and/or the determined time information of the IP LNB assembly. The IP LNB assembly may communicate the determined location information and/or the determined time information to a wireless communication device for determining location information of the wireless communication device. The IP LNB assembly may determine location information of a wireless source device based on a signal received from the wireless source device, the determined location information and the determined time information of the IP LNB assembly.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: April 26, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Curtis Ling, Timothy Gallagher, Glenn Chang
  • Patent number: 9326090
    Abstract: A wireless communication device (WCD) establishes an ad-hoc communication link with a second WCD within operating range. A replica of at least a portion of a display of the first WCD may be shared with the second WCD utilizing wireless broadband signals that are communicated via the established one or more ad-hoc communication links. The first WCD and the second WCD are operable to communicate the wireless broadband signals at a power level that is below a spurious emissions mask. The transmitted wireless broadband signals are spread so they occupy a designated frequency spectrum band. The shared replica of at least a portion of the display of the first WCD includes one or more applications, text, video and/or data content. A user of the first WCD may interact with content that is displayed on a display of the second WCD and vice-versa.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 26, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 9318813
    Abstract: A QRD processor for computing input signals in a receiver for wireless communication relies upon a combination of multi-dimensional Givens Rotations, Householder Reflections and conventional two-dimensional (2D) Givens Rotations, for computing the QRD of matrices. The proposed technique integrates the benefits of multi-dimensional annihilation capability of Householder reflections plus the low-complexity nature of the conventional 2D Givens rotations. Such integration increases throughput and reduces the hardware complexity, by first decreasing the number of rotation operations required and then by enabling their parallel execution. A pipelined architecture is presented (290) that uses un-rolled pipelined CORDIC processors (245a to 245d) iteratively to improve throughput and resource utilization, while reducing the gate count.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: April 19, 2016
    Assignee: MaxLinear, Inc.
    Inventors: Dimpesh Patel, Glenn Gulak, Mahdi Shabany
  • Patent number: 9320019
    Abstract: A WiFi device, which utilizes full spectrum capture, captures signals over a wide spectrum including one or more WiFi frequency bands and extracts one or more WiFi channels from the captured signals. The AP analyzes the extracted WiFi channels and aggregates a plurality of blocks of WiFi channels to create one or more aggregated WiFi channels based on the analysis. The WiFi frequency bands comprise 2.4 GHz and 5 GHz WiFi frequency bands. The AP determines one or more characteristics of the extracted WiFi channels based on the analysis. The determined characteristics comprise noise, interference, fading and blocker information. The AP generates a channel map comprising at least the extracted one or more WiFi channels based on the determined characteristics. The AP dynamically and/or adaptively senses the extracted one or more WiFi channels and updates the determined characteristics of the extracted WiFi channels.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: April 19, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Timothy Gallagher, Curtis Ling, Alan Trerise, Kishore Seendripu
  • Patent number: 9312821
    Abstract: Methods and systems for a configurable low-noise amplifier with programmable band-selection filters may comprise a low-noise amplifier (LNA) with a low pass filter coupled to a first input of the LNA and a high pass filter coupled to a second input of the LNA. The low pass filter and the high pass filter may also be coupled to a signal source input. Signals may be received in a pass band of the high pass filter and a pass band of the low pass filter. Input signals in the pass band of the one filter (but not signals in the pass band of the other filter) may be amplified by coupling the one input of the LNA to ground and coupling the other filter to ground utilizing a shunt resistor. The filters may be configurable and may each comprise at least one inductor and at least one capacitor.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: April 12, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Raja Pullela, Wenjian Chen, Vamsi Paidi
  • Patent number: 9306595
    Abstract: A system and method for low-power digital signal processing, for example, comprising adjusting a digital representation of an input signal.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: April 5, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Curtis Ling, Jining Duan
  • Patent number: 9306684
    Abstract: A satellite reception assembly may comprise a memory collocated with a receive module and a basestation module. The receive module may receive a satellite signal and recover data carried in the satellite signal. The data may be stored in the memory. The stored data may be transmitted to mobile devices via the basestation module. Which portion of the recovered data is store in the memory may be based on demand for particular data in the coverage area served by the basestation module. Which portion of the recovered data is stored in the memory may be based on information provided by a satellite subscriber, such as the subscriber's anticipated location at one or more future time intervals.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: April 5, 2016
    Assignee: MAXLINEAR, INC.
    Inventor: Curtis Ling
  • Patent number: 9294129
    Abstract: In an example implementation of this disclosure, a message passing low density parity check (LDPC) decoder may, during decoding of a first group of bits, lock a first variable node upon a bit-value probability of the first variable node reaching a determined threshold, and lock a first check node upon all variable nodes connected to the first check node being locked. The LDPC decoder may cease decoding the first group of bits upon all variable nodes of the LDPC decoder being locked, all check nodes of the LDPC decoder being locked, reaching a maximum number of iterations, or reaching a timeout. During a particular iteration of the decoding of the first group of bits in which the first variable node is locked, the LDPC decoder may refrain from generating a bit-value probability for the locked first variable node.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: March 22, 2016
    Assignee: MaxLinear, Inc.
    Inventors: Mingrui Zhu, Curtis Ling, Timothy Gallagher
  • Patent number: 9294117
    Abstract: A system for processing signals may be configured to apply digital conversion to analog signals, and to apply, prior to the analog-to-digital conversion, a gain to at least a portion of the analog signals. The gain may be controlled and/or adjusted based on processing of digital output generated based on the analog-to-digital conversion. The system may comprise a plurality of sampling slices, which may be configured to provide the analog-to-digital conversion in interleaved (e.g., time-interleaved) manner. Each of the sampling slices may comprise a dedicated gain element, for applying gain to signals handled by the corresponding slice. The gain applied by the gain elements of the sampling slices may be controlled, independently, collectively, and/or in based on grouping into subsets. The gain may be controlled based on application of a particular gain control algorithm, which may be selected from a plurality of predefined algorithms.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 22, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Raja Pullela, Curtis Ling
  • Patent number: 9294592
    Abstract: An integrated circuit may comprise a tuner operable to digitize a band of frequencies comprising a plurality of television channels, a crossbar operable to select one or more of the plurality of television channels output by the tuner, a plurality of demodulators operable to receive the selected one or more television channels from the crossbar and demodulate the selected one or more television channels to recover a plurality of transport streams, a transport module operable to multiplex the plurality of transport streams into a single packet stream, and a framer operable to: encapsulate packets of the plurality of transport streams into transport stream frames of a serial datastream, and insert filler frames into the serial datastream after every Nth transport stream frame of the serial datastream, where N is an integer.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: March 22, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Anand Anandakumar, Serdar Yilmaz, Chi-Foun Kuen, Ravi Aripirala
  • Patent number: 9282379
    Abstract: A system and method in a broadband receiver (e.g., a satellite television receiver) for efficiently receiving and processing signals, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: March 8, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Glenn Chang, Timothy Gallagher, Sridhar Ramesh
  • Patent number: 9277357
    Abstract: Methods and systems for map generation for location and navigation with user sharing/social networking may comprise a premises-based crowd-sourced database that receives images and location data from a plurality of users of wireless communication devices, and for each of said plurality of users: receiving a determined position of a wireless communication device (WCD), where the position is determined by capturing images of the surroundings of the WCD. Data associated with objects in the surroundings of the WCD may be extracted from the captured images, positions of the objects may be determined, and the determined positions and the data may then update the premises-based crowd-sourced database. The position of the WCD may be determined utilizing global navigation satellite system (GNSS) signals. The elements may comprise structural and/or textual features in the surroundings of the WCD. The position may be determined utilizing sensors that measure a distance from a known position.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: March 1, 2016
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 9277536
    Abstract: A single receiver is operable to utilize full spectrum capture to capture signals over a wide spectrum comprising a plurality of WiFi frequency bands, extract one or more WiFi channels from said captured signals and aggregate a plurality of blocks of said WiFi channels to create one or more aggregated WiFi channels. The WiFi frequency bands include 2.4 GHz and 5 GHz WiFi frequency bands. A plurality of blocks of the WiFi channels may be aggregated from contiguous blocks of spectrum and/or non-contiguous blocks of spectrum in one or more of said plurality of WiFi frequency bands. One or more non-WiFi channels may be filtered out from the captured signals. One or more aggregated WiFi channels may be assigned to one or more WiFi enabled communication devices. At least a portion of the one or more aggregated WiFi channels may be dynamically assigned to one or more other WiFi enabled communication devices.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: March 1, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Timothy Gallagher, Curtis Ling, Alan Trerise, Kishore Seendripu
  • Patent number: 9270310
    Abstract: A first microwave backhaul assembly comprises a first antenna, a front-end circuit, an inter-backhaul-assembly interface circuit, and an interference cancellation circuit. The first antenna is operable to receive a first microwave signal. The front-end circuit is operable to convert the first microwave signal to a lower-frequency digital signal, wherein the lower-frequency digital signal has energy of a second microwave signal and energy of a third microwave signal. The inter-backhaul-assembly interface circuit is operable to receive information from a second microwave backhaul assembly. The interference cancellation circuit is operable to use the information received via the inter-backhaul-assembly interface circuit during processing of the lower-frequency digital signal to remove, from the first microwave signal, the energy of the third microwave signal. The information received via the inter-backhaul-assembly interface may comprise a signal having energy of the second microwave signal.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: February 23, 2016
    Assignee: MAXLINEAR, INC.
    Inventors: Stephane Laurent-Michel, Curtis Ling