Abstract: Provided is a method for preparing L-BPA, which includes steps of: reacting N-protected (S)-4-halophenylalanine of Formula I, a boronating agent, Grignard reagent and bis(2-dimethylaminoethyl)ether to obtain a reaction mixture, wherein the reaction mixture comprises N-protected (S)-4-boronophenylalanine of Formula II and the R2 group represents a protecting group; isolating the N-protected (S)-4-boronophenylalanine from the reaction mixture; and deprotecting the R2 group of the N-protected (S)-4-boronophenylalanine to obtain L-BPA, wherein the L-BPA has a structure of Formula III.
Type:
Grant
Filed:
February 1, 2018
Date of Patent:
June 18, 2019
Assignee:
NEUBORON MEDTECH LTD.
Inventors:
Shihong Li, Jing He, Yuanhao Liu, Zheng Wang
Abstract: A digital topographic model of the luminal surface is generated by projecting an optical pattern on the luminal surface from the first location within the lumen. At least a portion of the projected pattern is detected from a second location within the lumen which is based apart from the first location. The dimensions of the luminal wall can be measured by triangulation in order to produce the digital topographic model of the body lumen.
Abstract: An apparatus for providing at least one treatment to at least one tissue having a first structural arrangement configured to expand a first portion at a distal end of the apparatus, a second structural arrangement configured to expand a second portion at the distal end and at least one lumen associated with at least one of the first structural arrangement and/or the second structural arrangement. The first structural arrangement and/or the second structural arrangement can be configured to position the at least one lumen at a particular position with respect to the tissue. A tip is configured to aid in the insertion of the apparatus into the tissue(s).
Type:
Grant
Filed:
February 6, 2017
Date of Patent:
June 4, 2019
Assignees:
MEMORIAL SLOAN-KETTERING CANCER CENTER, GC MEDTECH LLC
Inventors:
Gary A. Lamoureux, Gil'Ad N. Cohen, Karyn Goodman
Abstract: A cell-free particle is provided. The cell-free particle comprising a nucleic acid sequence encoding a toxin and a nucleic acid sequence encoding an anti-toxin and wherein the particle comprises a targeting moiety for delivery of the particle into a cancer cell.
Abstract: An implant, intended to be detachably fixed or crimped on a portion or an outer surface of a catheter for being delivered to an implantation site, includes a longitudinal axis, or an inner space or inner volume longitudinally extending within the implant, and a radial direction perpendicular to the longitudinal axis, space or volume. The implant includes a first structural element having a first portion, a second structural element having a second portion, and one or more interconnecting elements arranged between the first and the second structural elements. In the implant, the first portion and/or the second portion is/are located less radially as regards the longitudinal axis, inner space, or volume than a third portion of the one or more interconnecting elements.
Abstract: A medical introducer includes an elongated tubular member having a proximal end, a distal portion, and a central lumen extending from the proximal end to a distal port in the distal portion. A frame structure is coupled to the distal portion of the elongated tubular member, where frame structure supports the distal portion of the elongated tubular member in a tapered shape and alternatively in a non-tapered shape. The elongated tubular member may include a rigid outer tube and a rigid inner tube carried in an interior lumen of the outer tube. The distal portion is typically a reinforced elastomeric tubular extension of the outer tube, and the reinforced elastomeric tubular extension may have a conical shape.
Abstract: The present invention provides a catheter apparatus with a carrier comprising right-handed wire helixes and left-handed wire helixes that are plainly or bi-axially woven into a tubular structure. A therapeutic assembly wraps around one of the wire helixes to stabilize an associated interstice of the tubular structure. The regular shape of the carrier may be quickly recovered after the carrier is seriously bent or distorted in an intravascular treatment.
Abstract: Method for generating a shaped laser pulse in a lithotripter characterized in that if the pulse duration is divided into four intervals of equal length, less than 25% of the energy of the pulse is emitted in the first of those intervals, and in that the maximum intensity of the pulse is first reached in the second, third or fourth time interval, and wherein the intensity reached after the start of the third and/or forth interval is at least once the same as or higher than the maximum intensity reached in the second interval.
Type:
Grant
Filed:
October 24, 2014
Date of Patent:
April 16, 2019
Assignee:
DORNIER MEDTECH LASER GMBH
Inventors:
Werner Hiereth, Detlef Russ, Stefan Biggel, Raimund Hibst
Abstract: Provided is a compound for specifically binding to amyloid ?-protein. The compound has thereon a nuclide with a large thermal neutron capture cross section and the compound is capable of specifically binding to the amyloid ?-protein. The property of the compound allows it to be used in conjunction with a neutron capture therapy device to eliminate amyloid ?-protein. Similarly, when the compound is labelled with radioactive element 11C, the compound can also be used in conjunction with PET/CT for determining the part of the brain where amyloid ?-protein is deposited, for diagnosing Alzheimer's disease. Also disclosed is a preparation process for the compound. The beneficial effect of the present disclosure is to make the therapy and diagnosis of Alzheimer's disease more targeted by providing the compound for specifically binding to amyloid ?-protein.
Abstract: A digital topographic model of the luminal surface is generated by projecting an optical pattern on the luminal surface from the first location within the lumen. At least a portion of the projected pattern is detected from a second location within the lumen which is based apart from the first location. The dimensions of the luminal wall can be measured by triangulation in order to produce the digital topographic model of the body lumen.
Abstract: A single use injector is a disposable injection device that is specifically optimized for production using the blow fill seal (BFS) manufacturing process and includes various mechanisms that render the device inoperable and facilitate its safe disposal after use. The single use injector incorporates an ampoule aseptically filled with a medication that is coupled to a hermetically sealed component system. The hermetically sealed component system incorporates various mechanisms that are actuated during the use of the injection device. The injection device is encased in a removable overtube that prevents contamination. upon removal of the overtube, the injection device is activated, by compression of a needle cap that irreversible punctures the ampoule in order to inject the medication through a needle. The injection device additionally incorporates a shield that deploys over the needle following injection of the medication into a patient.
Type:
Grant
Filed:
February 27, 2015
Date of Patent:
March 5, 2019
Assignee:
ADAR MEDTECH, INC.
Inventors:
Daniel William Thornton, Mark Christian Johnson
Abstract: The present invention relates to a coating, a substrate, a method for coating a body and a method for producing the body substrate, such as a dental or a bone implant. The coating has a high degree of mechanical stability and comprises elements, such as Sr based compounds, which optimize the tissue response to the implanted body thus stimulating healing, bone or tissue growth in the vicinity of the implant. An implant coated with this coating has the ability of sustained release of strontium in a non-toxic concentration of strontium in the vicinity of the implant.
Type:
Grant
Filed:
March 22, 2013
Date of Patent:
February 26, 2019
Assignee:
Elos Medtech Pinol A/S
Inventors:
Morten Foss, Ole Zoffmann Andersen, Michael Brammer Sillassen, Jørgen Bøttiger, Inge Hald Andersen, Klaus Pagh Almtoft, Lars Pleth Nielsen, Christian Schärfe Thomsen
Abstract: A stent and a securely-installed artificial valve replacement device having the same, the stent being of a cylindrical structure; the top of the stent is provided with a fixed ear (60); the fixed ear (60) has a neck portion (601) connected to the top of the stent, and a head portion (602) engaged with the fixed head of the stent; the head portion (602) has a bending structure for improving the overall radial thickness; and the artificial valve replacement device is comprised of a stent and a prosthetic valve fixed on the stent. The stent with a bending structure overcomes the problem of easily disengaging from the fixed head of the stent, while not affecting the release of the stent.
Abstract: The present invention provides a catheter apparatus with a carrier comprising right-handed wire helixes and left-handed wire helixes that are plainly or bi-axially woven into a tubular structure. A therapeutic assembly wraps around one of the wire helixes to stabilize an associated interstice of the tubular structure. The regular shape of the carrier may be quickly recovered after the carrier is seriously bent or distorted in an intravascular treatment.
Abstract: The present invention relates to an apparatus (100) for folding or unfolding at least one medical implant (300) by using at least one tension thread (11, 11?), wherein the apparatus (100) includes a shaft (1) including a reception area (55) for receiving the implant (300), and a tensioning device for altering a shape of the foldable and/or unfoldable implant (300) by the tension thread (11, 11?).
Abstract: A heart valve assembly has a frame comprising an anchoring section, a generally cylindrical leaflet support section, and a neck section that transitions between the anchoring section and the valve support section. The anchoring section has a ball-shaped configuration defined by a plurality of wires that extend from the leaflet support section, with each wire extending radially outwardly to a vertex area where the diameter of the anchoring section is at its greatest, and then extending radially inwardly to a hub. A plurality of leaflets are stitched to the leaflet support section. The heart valve assembly is delivered to the location of a native pulmonary trunk, the vertex area of the anchoring section is deployed into the native pulmonary arteries such that the vertex area is retained in the pulmonary arteries, and then the leaflet support section is deployed in the pulmonary trunk.
Abstract: The robotic device for positioning a surgical instrument relative to the body of a patient includes a first robotic arm with a device for rigidly connecting to at least one surgical instrument, a device for anatomical realignment of the first arm by realigning an image that is of an area of the anatomy of the patient, and a device for compensating the movements of the first arm on the basis of detected movements. One version of the device includes at least one second robotic arm having sensors for detecting inner movements of the anatomical area, and a device for controlling the positioning of the first arm relative to sensed inner movements and to the outer movements induced in the second arm.
Type:
Grant
Filed:
January 30, 2017
Date of Patent:
December 25, 2018
Assignee:
MedTech S.A.
Inventors:
Pierre Maillet, Bertin Nahum, Fernand Badano, Patrick Dehour