Patents Assigned to Megica Corporation
  • Patent number: 8471361
    Abstract: An integrated chip package structure and method of manufacturing the same is by adhering dies on an organic substrate and forming a thin-film circuit layer on top of the dies and the organic substrate. Wherein the thin-film circuit layer has an external circuitry, which is electrically connected to the metal pads of the dies, that extends to a region outside the active surface of the dies for fanning out the metal pads of the dies. Furthermore, a plurality of active devices and an internal circuitry is located on the active surface of the dies. Signal for the active devices are transmitted through the internal circuitry to the external circuitry and from the external circuitry through the internal circuitry back to other active devices. Moreover, the chip package structure allows multiple dies with different functions to be packaged into an integrated package and electrically connecting the dies by the external circuitry.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: June 25, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Ching-Cheng Huang
  • Patent number: 8471389
    Abstract: An integrated circuit module has a common function known good integrated circuit die with selectable functions. The selectable functions arc selected during packaging of the known good integrated circuit die. The known good integrated circuit die is mounted to a second level substrate. The second level substrate has wiring connections to the input/output pads of the known good integrated circuit die that select desired input functions and output functions. Further, the wiring connections on the second level substrate provide signal paths to transfer signals to the desired input function and signals from the desired output function, and signals to and from the common functions. Also, the wiring connections form connections between the input/output pads and external circuitry. To select the desired input functions and the desired output functions, appropriate logic states are applied to input/output pads connected to a function selector to configure a functional operation of the integrated circuit module.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: June 25, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shiung Lin
  • Patent number: 8471388
    Abstract: A method for fabricating an integrated circuit (IC) chip includes forming a metal trace having a thickness of between 5 ?m and 27 ?m over a semiconductor substrate, and forming a passivation layer on the metal trace, wherein the passivation layer includes a layer of silicon nitride on the metal trace and a layer of silicon oxide on the layer of silicon nitride, or includes a layer of silicon oxynitride on the metal trace and a layer of silicon oxide on the layer of silicon oxynitride.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: June 25, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Patent number: 8461679
    Abstract: A cylindrical bonding structure and its method of manufacture. The cylindrical bonding structure is formed over the bonding pad of a silicon chip and the chip is flipped over to connect with a substrate board in the process of forming a flip-chip package. The cylindrical bonding structure mainly includes a conductive pillar and a solder cap. The conductive pillar is formed over the bonding pad of the silicon chip and the solder cap is attached to the upper end of the conductive pillar. The solder cap has a melting point lower than the conductive pillar. The solder cap can be configured into a cylindrical, spherical or hemispherical shape. To fabricate the cylindrical bonding structure, a patterned mask layer having a plurality of openings that correspond in position to the bonding pads on the wafer is formed over a silicon wafer. Conductive material is deposited into the openings to form conductive pillars and finally a solder cap is attached to the end of each conductive pillar.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: June 11, 2013
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Chien-Kang Chou, Shih-Hsiung Lin, Hsi-Shan Kuo
  • Patent number: 8461686
    Abstract: A new method is provided for the creation of interconnect lines. Fine line interconnects are provided in a first layer of dielectric overlying semiconductor circuits that have been created in or on the surface of a substrate. A layer of passivation is deposited over the layer of dielectric, a thick second layer of dielectric is created over the surface of the layer of passivation. Thick and wide interconnect lines are created in the thick second layer of dielectric. The first layer of dielectric may also be eliminated, creating the wide thick interconnect network on the surface of the layer of passivation that has been deposited over the surface of a substrate.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: June 11, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Patent number: 8456856
    Abstract: Integrated circuit chips and chip packages are disclosed that include an over-passivation scheme at a top of the integrated circuit chip and a bottom scheme at a bottom of the integrated circuit chip using a top post-passivation technology and a bottom structure technology. The integrated circuit chips can be connected to an external circuit or structure, such as ball-grid-array (BGA) substrate, printed circuit board, semiconductor chip, metal substrate, glass substrate or ceramic substrate, through the over-passivation scheme or the bottom scheme. Related fabrication techniques are described.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: June 4, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Hsin-Jung Lo, Ping-Jung Yang, Te-Sheng Liu
  • Patent number: 8456013
    Abstract: A new method is provided for the creation of interconnect lines. Fine line interconnects are provided in a first layer of dielectric overlying semiconductor circuits that have been created in or on the surface of a substrate. A layer of passivation is deposited over the layer of dielectric, a thick second layer of dielectric is created over the surface of the layer of passivation. Thick and wide interconnect lines are created in the thick second layer of dielectric. The first layer of dielectric may also be eliminated, creating the wide thick interconnect network on the surface of the layer of passivation that has been deposited over the surface of a substrate.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: June 4, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shiung Lin
  • Publication number: 20130127024
    Abstract: An integrated circuit chip includes a silicon substrate, a first circuit in or over said silicon substrate, a second circuit device in or over said silicon substrate, a dielectric structure over said silicon substrate, a first interconnecting structure in said dielectric structure, a first pad connected to said first node of said voltage regulator through said first interconnecting structure, a second interconnecting structure in said dielectric structure, a second pad connected to said first node of said internal circuit through said second interconnecting structure, a passivation layer over said dielectric structure, wherein multiple opening in said passivation layer exposes said first and second pads, and a third interconnecting structure over said passivation layer and over said first and second pads.
    Type: Application
    Filed: January 7, 2013
    Publication date: May 23, 2013
    Applicant: Megica Corporation
    Inventor: Megica Corporation
  • Patent number: 8440272
    Abstract: A method for fabricating and testing a wafer includes forming metal traces with metal pads, wherein forming the metal traces include forming a TiW layer on a passivation layer and on pads, next forming a seed layer on the TiW layer, next forming a photoresist layer on the seed layer, next forming a metal layer on the seed layer exposed by openings in the photoresist layer, next removing the photoresist layer, next removing the seed layer not under the metal layer, and then etching the TiW layer not under the metal layer with an etchant containing H2O2 at a temperature of between 35 and 50° C., or with an etchant containing H2O2 and with ultrasonic waves applied to the etchant, next contacting probe tips of a probe card with some of the metal pads, next cleaning the probe tips until repeating the step of contacting the probe tips with some of the metal pads at greater than 100 times, and then after cleaning the probe tips, repeating the step of contacting the probe tips with some of the metal pads.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: May 14, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Shih-Hsiung Lin
  • Patent number: 8435883
    Abstract: A new method is provided for the creation of interconnect lines. Fine line interconnects are provided in a first layer of dielectric overlying semiconductor circuits that have been created in or on the surface of a substrate. A layer of passivation is deposited over the layer of dielectric, a thick second layer of dielectric is created over the surface of the layer of passivation. Thick and wide interconnect lines are created in the thick second layer of dielectric. The first layer of dielectric may also be eliminated, creating the wide thick interconnect network on the surface of the layer of passivation that has been deposited over the surface of a substrate.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: May 7, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Patent number: 8436449
    Abstract: A method for fabricating chip package includes providing a semiconductor chip with a bonding pad, comprising an adhesion/barrier layer, connected to a pad through an opening in a passivation layer, next adhering the semiconductor chip to a substrate using a glue material, next bonding a wire to the bonding pad and to the substrate, forming a polymer material on the substrate, covering the semiconductor chip and the wire, next forming a lead-free solder ball on the substrate, and then cutting the substrate and polymer material to form a chip package.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: May 7, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shiung Lin
  • Patent number: 8431977
    Abstract: A semiconductor chip includes a silicon substrate, a transistor in or on a bottom side surface of the substrate, a metallization structure under a bottom side surface of the substrate, a dielectric layer under the substrate and between a first and second metal layers of the metallization structure, a passivation layer under the metallization structure and the dielectric layer, where an opening in the passivation layer may be under a contact point of the metallization structure, a polymer layer under the passivation layer, a metal post under the passivation layer and in the polymer layer, where the polymer layer may not cover a bottom surface of the metal post, a metal bump connected with the bottom surface of the metal post, a micro-lense over the top side surface of the substrate, and a glass substrate over the micro-lense and over the top side surface of the substrate.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 30, 2013
    Assignee: Megica Corporation
    Inventor: Ping-Jung Yang
  • Patent number: 8426958
    Abstract: A chip package comprises a first chip having a first side and a second side, wherein said first chip comprises a first pad, a first trace, a second pad and a first passivation layer at said first side thereof, an opening in said first passivation layer exposing said first pad, said first trace being over said first passivation layer, said first trace connecting said first pad to said second pad; a second chip having a first side and a second side, wherein said second chip comprises a first pad at said first side thereof, wherein said second side of said second chip is joined with said second side of side first chip; a substrate joined with said first side of said first chip or with said first side of said second chip; a first wirebonding wire connecting said second pad of said first chip and said substrate; and a second wirebonding wire connecting said first pad of said second chip and said substrate.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 23, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Shih-Hsiung Lin, Hsin-Jung Lo, Ying-Chih Chen, Chiu-Ming Chou
  • Patent number: 8426982
    Abstract: A Chip Scale Package (CSP) and a method of forming the same are disclosed. Single chips without the conventional ball mountings, are first attached to an adhesive-substrate (adsubstrate) composite having openings that correspond to the input/output (I/O) pads on the single chips to form a composite chip package. Ball mounting is then performed over the openings, thus connecting the I/O pads at the chip sites to the next level of packaging directly. In another embodiment, the adhesive layer is formed on the wafer side first to form an adwafer, which is then die sawed in CSPs. Then the CSPs with the adhesive already on them are bonded to a substrate. The composite chip package may optionally be encapsulated with a molding material. The CSPs provide integrated and shorter chip connections especially suited for high frequency circuit applications, and can leverage the currently existing test infrastructure.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: April 23, 2013
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Ching-Cheng Huang, Mou-Shiung Lin
  • Patent number: 8421227
    Abstract: A semiconductor chip structure includes a semiconductor substrate, an circuit structure, a passivation layer, a first adhesion/barrier layer, a metal cap and a metal layer. The semiconductor substrate has multiple electric devices located on a surface layer of a surface of the substrate. The circuit structure had multiple circuit layers electrically connecting with each other and electrically connecting with the electric devices. One of the circuit layers has multiple pads. The passivation layer is located on the circuit structure and has multiple openings penetrating through the passivation layer. The openings expose the pads. The first adhesion/barrier layer is over the pads and the passivation layer. The metal cap is located on the first adhesion/barrier layer and the passivation layer. The metal layer is on the metal layer.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: April 16, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Patent number: 8421222
    Abstract: A method of assembling chips. A first chip and a second chip are provided. At least one conductive pillar is formed on the first chip, and a conductive connecting material is formed on the conductive pillar. The second chip also comprises at least one conductive pillar. The first chip is connected to the second chip via the conductive pillars and the conductive connecting material.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: April 16, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Shih-Hsiung Lin, I
  • Patent number: 8420520
    Abstract: The present invention provides a method for fabricating chip package comprises the following steps: forming a photoresist layer on a metal layer over a passivation layer, an opening in the photoresist layer exposing the metal layer, wherein said forming the photoresist layer comprises exposing the photoresist layer using 1X stepper with at least two of G-line, H-line and I-line; electroplating a gold layer over the metal layer exposed by the opening with an electroplating solution containing gold and sulfite ion; removing the photoresist layer and the metal layer not under the gold layer.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: April 16, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Patent number: 8421158
    Abstract: The present invention provides a method for forming a chip structure with a resistor. A semiconductor substrate is provided and has a surface. A plurality of electronic devices and a resistor is formed on the surface of the semiconductor substrate. A plurality of dielectric layers and a plurality of circuit layers are formed over the semiconductor substrate. The dielectric layers are stacked over the semiconductor substrate and have a plurality of via holes. Each of the circuit layers is disposed on corresponding one of the dielectric layers respectively, wherein the circuit layers are electrically connected with each other through the via holes and are electrically connected to the electronic devices. A passivation layer is formed over the dielectric layers and the circuit layers. A circuit line is formed over the passivation layer, wherein the circuit line passes through the passivation layer and is electrically connected to the resistor.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: April 16, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shiung Lin
  • Patent number: 8415800
    Abstract: A method of closely interconnecting integrated circuits contained within a semiconductor wafer to electrical circuits surrounding the semiconductor wafer. Electrical interconnects are held to a minimum in length by making efficient use of polyimide or polymer as an inter-metal dielectric thus enabling the integration of very small integrated circuits within a larger circuit environment at a minimum cost in electrical circuit performance.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: April 9, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shiung Lin
  • Patent number: 8399988
    Abstract: A multiple integrated circuit chip structure provides interchip communication between integrated circuit chips of the structure with no ESD protection circuits and no input/output circuitry. The interchip communication is between internal circuits of the integrated circuit chips. The multiple integrated circuit chip structure has an interchip interface circuit to selectively connect internal circuits of the integrated circuits to test interface circuits having ESD protection circuits and input/output circuitry designed to communicate with external test systems during test and burn-in procedures. The multiple interconnected integrated circuit chip structure has a first integrated circuit chip mounted to one or more second integrated circuit chips to physically and electrically connect the integrated circuit chips to one another.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: March 19, 2013
    Assignee: Megica Corporation
    Inventor: Mou-Shiung Lin