Abstract: A display system includes a substrate guided relay and a scanning projector. The scanning projector exhibits a brightness variation on a resonant scanning axis, and the substrate guided relay exhibits a brightness variation along a length of an output coupler. The scanning projector includes a brightness compensation circuit to compensate for both the brightness variation caused by the resonant scanning and the brightness variation along the length of the output coupler.
Abstract: The present invention discloses a structure and a method for determining a defect in integrated circuit manufacturing process. Test keys are designed for the structure to be the interlaced arrays of grounded and floating conductive cylinders, and the microscopic image can be predicted to be an interlaced pattern of bright voltage contrast (BVC) and dark voltage contrast (DVC) signals for a charged particle beam imaging system. The system can detect the defects by comparing patterns of the detected VC signals and the predicted VC signals.
Abstract: A projection apparatus includes a shutter mechanism to prevent light from reaching an image plane during calibration of light sources. The shutter mechanism may include liquid crystal material that exhibits an effective index of refraction that varies with applied voltage. During calibration, a light beam is shuttered, light sources are driven by calibration data, and optical power is measured.
Abstract: This invention provides a test structure for inspecting word line array fabricated by SADP process, wherein the test structure comprises a contour circuit to cover one end of the WL array, and is alternatively float and ground to the word line array. The word line array then can be inspected by using E-beam inspection tool to identify open and short defects.
Abstract: A method and system for detecting or reviewing defective contacts on a semiconductor device are disclosed. In a first embodiment, the method and system comprise providing a positive charge sufficient enough to turn on a gate of an associated MOS device and scanning an area of interest within the MOS device with a primary electron beam of proper landing energy to generate image. The method and system include analyzing the signal of contacts and identify the open contacts. In a second embodiment, the method and system comprises pre-scanning or irradiating the wafer surface defect with an accessory beam, a plurality of times, to achieve positive charged/sufficient to turn on the gate on the associated MOS devices of the wafer; and scanning the at least a portion of the device circuits with a primary electron beam of proper landing energy to generate images wafer or area of interest. The method and system include analyzing the signal and/or image of contacts and identify the open contacts.
Abstract: Briefly, in accordance with one or more embodiments, an image or projection cone is projected onto a projection surface via a raster scan to generate the image, or in a light cone. Movements of two or more input sources with respect to projection cone are detected, and a determination is made whether the input sources have crossed a crossover line in the projection cone. If the input sources have moved greater than a threshold amount after crossing the crossover line, position data between the input sources may be exchanged to reflect proper position data for the input sources.
Type:
Grant
Filed:
October 19, 2011
Date of Patent:
May 20, 2014
Assignee:
Microvision, Inc.
Inventors:
P. Selvan Viswanathan, Mark Champion, David Lashmet
Abstract: A substrate guided relay includes multiple output couplers and multiple light valves positioned between the substrate and the output couplers. The number of light valves may be equal to the number of output couplers, or may be more or less than the number of output couplers. The light valves may be enabled sequentially, or may be enabled based on the position of a user's eye. The light valves may include liquid crystal material.
Abstract: A scanning projector includes an optical filter. The optical filter exhibits a variable attenuation as a function of position. The scanning projector may scan sinusoidally in at least one dimension. The variable attenuation of the optical filter compensates for brightness variations due to sinusoidal scanning.
Abstract: A retractable optic conditionally redirects an image from a scanning laser projector. The retractable optic may be coupled to a mobile device, a mobile device case, or may be part of an attachment. The retractable optic includes a reflective surface that has a free-form shape defined by a polynomial that is a function of two independent, transverse coordinate variables.
Type:
Application
Filed:
October 31, 2012
Publication date:
May 1, 2014
Applicant:
MICROVISION, INC.
Inventors:
Markus Duelli, P. Selvan Viswanathan, Joshua O. Miller, James A. Yasukawa
Abstract: A method for filtering noises in an image scanned by charged particles includes steps of grouping pixels with similar types in the image into a plurality of pixel groups; and removing noises for each pixel group in the image according to a corresponding noise model to obtain the scanned image with better quality and/or contrast. A system for filtering noises in an image scanned by charged particles is also disclosed.
Type:
Grant
Filed:
December 5, 2011
Date of Patent:
April 29, 2014
Assignee:
Hermes Microvision, Inc.
Inventors:
Chad Liao, Futang Peng, Chuan Li, Alina Wang, Zhao-Li Zhang, Wei Fang, Jack Jau
Abstract: In imaging system (100), a spatial light modulator (101) is configured to produce images (102) by scanning a plurality light beams (104,105,106). A first optical element (107) is configured to cause the plurality of light beams to converge along an optical path (114) defined between the first optical element and the spatial light modulator. A second optical element (115) is disposed between the spatial light modulator and an output of the imaging system. The first optical element and the spatial light modulator are arranged such that an image plane (117) is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light (118) from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil (120) on the other side of the second optical element relative to the spatial light modulator.
Type:
Grant
Filed:
May 8, 2012
Date of Patent:
April 29, 2014
Assignee:
Microvision, Inc.
Inventors:
Joshua M. Hudman, Christian Dean DeJong
Abstract: A scanning projector includes a scanning mirror that sweep a beam in two dimensions. Tangential distortion in a fast-scan dimension is compensated by incorporating a tangent function when determining the light beam location and interpolating pixel data. Tangential distortion in a slow-scan dimension is compensated by driving the scanning mirror nonlinearly in the slow scan dimension such that the light beam sweeps across the display surface at a constant rate.
Abstract: A scanning laser projector includes a scanning mirror that moves in a sinusoidal motion on at least one axis. Pixels are displayed by modulating a laser beam that is reflected by the scanning mirror. Pixels are generated using light pulses of different duty cycles based on the position and/or angular velocity of the laser beam.
Abstract: This invention provides a phase detector with more than two detector units on a printed circuit layer. A detector set includes a pair of detector units or one detector unit, and a detector row includes a plurality of detector sets in one line. The phase detector includes a plurality of detector rows and each row has a detector set in one period, wherein all detector units are interleaved to have the same interval between any two adjacent detector units, which is defined as a pitch and the pitch is equal to one period dividing the detector pair number, which is the half sum of the number of one detector set for all rows.
Abstract: A method of inspecting an EUV reticle is proposed, which uses an original design layout information to align the plurality of patterns on an image, which is got by scanning the surface of an EUV reticle, such that the defect can be identified and classified according to the aligned patterns. In the scanning process, a step of conditioning surface charge is followed by a step of inspecting surface of the EUV reticle wherein the step of conditioning surface can neutralize the surface charge and the step of inspecting can obtain an image of the EUV reticle. The method of inspecting an EUV reticle also tuning a retarding electrode to attract more secondary electrons such that the greylevels of different patterns may be shown and the defect can be identified and classified.
Abstract: An imaging method and apparatus for forming images of substantially the same area on a sample for defect inspection within the area are disclosed. The disclosed method includes line-scanning the charged particle beam over the area to form a plurality of n*Y scan lines by repeatedly forming a group of n scan lines for Y times. During the formation of each group of n scan lines, an optical beam is, from one line scan to another, selectively illuminated on the area prior to or simultaneously with scanning of the charged particle beam. In addition, during the formation of each group of n scan lines, a condition of illumination of the optical beam selectively changes from one line scan to another. The conditions at which individual n scan lines are formed are repeated for the formation of all Y groups of scan lines.
Abstract: Regions are defined in projected content to create a virtually segmented display. When reflections are received from objects within a defined region, the reflections are recognized and passed to a user interface circuit. When reflections are received from objects outside a defined region, the reflections are gated and not recognized.
Abstract: Briefly, in accordance with one or more embodiments, a closed loop feedback system for electronic beam alignment in a scanned beam display comprises a light source to emit one or more light beams, a controller to provide a control signal to drive the light source, a scanning platform to receive the one or more light beams and scan the light beams in a scanning pattern to project an image, and an alignment detector to provide a feedback signal indicative of beam position information of the light beams in the far field to the controller. An optic may be disposed in the beam path to magnify and/or to transform beam position information into the far field for the one or more alignment detectors. The controller adjusts the control signal in response to the feedback signal received from the alignment detector to maintain alignment of the light beams in a far field.
Abstract: The luminance of a laser diode is a function of laser diode drive current. The luminance is also a function of other factors, such as age and temperature. A laser projection device includes laser diodes to generate light in response to a commanded luminance, and also includes photodiodes to provide a measured luminance. The commanded luminance and measured luminance are compared, and drive currents for the laser diodes are adjusted to compensate for changes in laser diode characteristics.
Abstract: A method for characterizing identified defects during charged particle beam inspection of a sample is disclosed. The method comprises obtaining a voltage contrast image of the sample by using a charged particle beam imaging apparatus at an inspection temperature; identifying, from the voltage contrast image, the presence of at least one defect on the sample; providing reference data of the sample, wherein the reference data represents at least one reference defect on the sample; comparing the location or geographical distribution of the identified defects and the reference defects on the sample to correlate the identified defects with the inspection temperature thereby characterizing the identified defects.