Patents Assigned to MICROVISION
  • Patent number: 10156735
    Abstract: Eyeglasses are provided for folding into a substantially flat configuration to be fitted inside a compact case. The eyeglasses include a frame surrounding a pair of lenses, and a pair of temples which extend from respective outer edges of the frame. A first hinge connection positioned on each temple allows outer parts of the pair of temples to be folded horizontally inwards from the unfolded configuration into a first folded configuration. Respective inner parts of the temples are rotatable downwards relative to opposite side edges of the frame about respective second hinge connections into a fully folded condition substantially coplanar with the frame. In some embodiments, the frame and tips or earpieces of the temples are of rigid plastic material while the temples and hinge connections are of metal.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 18, 2018
    Assignee: MICROVISION OPTICAL, LLC
    Inventor: David A. Johnson
  • Patent number: 10145680
    Abstract: Devices and methods are described herein for combining image projection with surface scanning. In general, the devices and methods utilize at least one source of laser light to generate a laser beam, and scanning mirror(s) that reflect the laser beam into a pattern of scan lines. The source of light is controlled to selectively generate projected image pixels during a first portion of the pattern of scan lines, and to selectively generate depth mapping pulses during a second portion of the pattern of scan lines. The projected image pixels generate a projected image, while the depth mapping pulses are reflected from the surface, received, and used to generate a 3-dimensional point clouds that describe the measured surface depth at each point. Thus, during each scan of the pattern both a projected image and a surface depth map can be generated.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: December 4, 2018
    Assignee: Microvision, Inc.
    Inventors: P. Selvan Viswanathan, Jari Honkanen, Douglas R. Wade, Bin Xue
  • Patent number: 10141160
    Abstract: A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: November 27, 2018
    Assignee: HERMES MICROVISION, INC.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Patent number: 10114215
    Abstract: The embodiments described herein provide scanning laser devices that include a relay optic between scanning surfaces. In general, the relay optic is configured to reimage the laser beam reflecting from a first scanner onto the second scanner. Specifically, the relay optic is configured to reimage a laser beam reflected from over an angular range from a first scanning surface of a first scanner onto the scanning surface of the second scanner. This can effectively make the exit pupil of the scanners substantially coincident, and thus can reduce the exit pupil disparity between the scanners that would otherwise exist.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 30, 2018
    Assignee: Microvision, Inc.
    Inventors: Nenad Nestorovic, Roeland Collet
  • Patent number: 10115559
    Abstract: One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: October 30, 2018
    Assignee: HERMES MICROVISION, INC.
    Inventors: Xuedong Liu, Weiming Ren, Shuai Li, Zhongwei Chen
  • Patent number: 10108022
    Abstract: Devices and methods are described herein that use a first solid figure element, a polarizing beam splitter, and a second solid figure element or array of mirrors to reduce speckle in projected images. Specifically, laser light is generated and split into two portions having orthogonal polarizations. The first portion of laser light is reflected in the second solid figure element or the array of mirrors and is then spatially recombined with the second portion of laser light in the first solid figure element. The difference in path length followed by the two portions generates a temporal incoherence in the recombined laser light beam, and that temporal incoherence reduces speckle in the projected image.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: October 23, 2018
    Assignee: Microvision, Inc.
    Inventors: Matthieu Saracco, Roeland Collet, Alga Lloyd Northern, III
  • Patent number: 10110863
    Abstract: A scanning projector includes one or more scanning mirrors that reflect a light beam to create an image. The beam is created by multiple laser light sources, at least two of which create light at substantially the same color. The multiple laser light sources are used alternately to illuminate successive pixels, lines, and/or frames. Speckle reduction is achieved because of spatial overlap of the light beams produced by the multiple laser light sources.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: October 23, 2018
    Assignee: Microvision, Inc.
    Inventors: Dale Eugene Zimmerman, Matthieu Saracco, Jonathan A. Morarity
  • Patent number: 10109456
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: October 23, 2018
    Assignee: HERMES MICROVISION INC.
    Inventors: Weiming Ren, Shuai Li, Xuedong Liu, Zhongwei Chen
  • Patent number: 10110866
    Abstract: The embodiments described herein provide scanning laser devices that include an output optic configured to reduce image distortion. Specifically, the output optic is configured to reduce the distortions that could otherwise occur at relatively short projection distances, while also providing good image quality at relatively long projection distances. In general, the output optic includes a prism having a first surface, a second surface, and a third surface. The prism is configured such that the laser light interacts with each of these three surfaces while being transmitted through the prism and outputted to the display surface. The first, second, and third surfaces are each formed to have a freeform rotationally asymmetric shape, and these freeform rotationally asymmetric shapes are configured to work together to correct distortion in projected images.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: October 23, 2018
    Assignee: Microvision, Inc.
    Inventors: Matthieu Saracco, Roeland Collet, Alga Lloyd Nothern, III, Nenad Nestorovic, Jack H. Schmidt
  • Patent number: 10104353
    Abstract: A scanning projector and method is provided that generates a feedback signal from at least one photodetector. In the scanning projector, a scanning mirror is configured to reflect laser light into an image region and an over scanned region. The at least one photodetector is configured to receive a portion of the reflected laser light impacting the over scanned region, and provides the feedback signal responsive to the received portion of light. This feedback signal can then be used to provide precise control of the scanning mirror.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: October 16, 2018
    Assignee: Microvision, Inc.
    Inventor: Robert James Jackson
  • Patent number: 10102619
    Abstract: An inspection method includes the following steps: identifying a plurality of patterns within an image; and comparing the plurality of patterns with each other for measurement values thereof. The above-mentioned inspection method uses the pattern within the image as a basis for comparison; therefore, measurement values of the plurality of pixels constructing the pattern can be processed with statistical methods and then compared, and the false rate caused by variation of a few pixels is decreased significantly. An inspection system implementing the above-mentioned method is also disclosed.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: October 16, 2018
    Assignee: HERMES MICROVISION, INC.
    Inventors: Wei Fang, Zhao-Li Zhang, Jack Jau
  • Patent number: 10088438
    Abstract: A structure for grounding an extreme ultraviolet mask (EUV mask) is provided to discharge the EUV mask during the inspection by an electron beam inspection tool. The structure for grounding an EUV mask includes at least one grounding pin to contact conductive areas on the EUV mask, wherein the EUV mask may have further conductive layer on sidewalls or/and back side. The inspection quality of the EUV mask is enhanced by using the electron beam inspection system because the accumulated charging on the EUV mask is grounded. The reflective surface of the EUV mask on a continuously moving stage is scanned by using the electron beam simultaneously. The moving direction of the stage is perpendicular to the scanning direction of the electron beam.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: October 2, 2018
    Assignee: HERMES MICROVISION, INC.
    Inventors: Guochong Weng, Youjin Wang, Chiyan Kuan, Chung-Shih Pan
  • Patent number: 10070016
    Abstract: A scanning projector and method is provided that that uses at least one multi-stripe laser to generate the laser light for the scanned image. Specifically, the multi-stripe laser includes at least a first laser element and a second laser element formed together on a semiconductor die. The first laser element is configured to output a first laser light beam, and the second laser element is configured to output a second laser light beam. At least one scanning mirror is configured to reflect the first laser light beam and the second laser light beam, and a drive circuit is configured to provide an excitation signal to excite motion of the at least one scanning mirror. Specifically, the motion is excited such that the at least one scanning mirror reflects the first laser light beam and the second laser light beam in a raster pattern of scan lines.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: September 4, 2018
    Assignee: Microvision, Inc.
    Inventors: Matthieu Saracco, Dale Eugene Zimmerman
  • Patent number: 10069278
    Abstract: A laser drive circuit compensates for laser diode dynamics. A compensation value is determined from a sum of weighted basis functions. The basis functions may be a function of current desired optical powers and/or past desired optical powers. The weights may be updated periodically based at least in part on accumulated basis function outputs and measured optical powers.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: September 4, 2018
    Assignee: Microvision, Inc.
    Inventor: Patrick J. McVittie
  • Patent number: 10062541
    Abstract: A new multi-beam apparatus with a total FOV variable in size, orientation and incident angle, is proposed. The new apparatus provides more flexibility to speed the sample observation and enable more samples observable. More specifically, as a yield management tool to inspect and/or review defects on wafers/masks in semiconductor manufacturing industry, the new apparatus provide more possibilities to achieve a high throughput and detect more kinds of defects.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: August 28, 2018
    Assignee: HERMES MICROVISION INC.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Patent number: 10061441
    Abstract: A projection system emits light pulses in a field of view and measures properties of reflections. Properties may include time of flight and return amplitude. Foreground objects and background surfaces are distinguished, distances between foreground objects and background surfaces are determined based on reflections that are occluded by the foreground objects and other properties of the projection system.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: August 28, 2018
    Assignee: Microvision, Inc.
    Inventors: Jonathan A. Morarity, Patrick J. McVittie, P. Selvan Viswanathan, Ru Chen, Justin R. Zilke
  • Patent number: 10054556
    Abstract: A structure for discharging an extreme ultraviolet mask (EUV mask) is provided to discharge the EUV mask during the inspection by an electron beam inspection tool. The structure for discharging an EUV mask includes at least one grounding pin to contact conductive areas on the EUV mask, wherein the EUV mask may have further conductive layer on sidewalls or/and bottom. The inspection quality of the EUV mask is enhanced by using the electron beam inspection system because the accumulated charging on the EUU mask is grounded.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: August 21, 2018
    Assignee: HERMES MICROVISION INC.
    Inventors: You-Jin Wang, Chiyan Kuan, Chung-Shih Pan
  • Patent number: 10032600
    Abstract: This invention provides a charged particle source, which comprises an emitter and means for generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: July 24, 2018
    Assignee: HERMES MICROVISION, INC.
    Inventor: Shuai Li
  • Patent number: 10020164
    Abstract: The present invention provides apparatuses to inspect small particles on the surface of a sample such as wafer and mask. The apparatuses provide both high detection efficiency and high throughput by forming Dark-field BSE images. The apparatuses can additionally inspect physical and electrical defects on the sample surface by form SE images and Bright-field BSE images simultaneously. The apparatuses can be designed to do single-beam or even multiple single-beam inspection for achieving a high throughput.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: July 10, 2018
    Assignee: HERMES MICROVISION INC.
    Inventors: Zhongwei Chen, Jack Jau, Weiming Ren
  • Patent number: 10008360
    Abstract: The device includes a beam source for generating an electron beam, a beam guiding tube passed through an objective lens, an objective lens for generating a magnetic field in the vicinity of the specimen to focus the particles of the particle beam on the specimen, a control electrode having a potential for providing a retarding field to the particle beam near the specimen to reduce the energy of the particle beam when the beam collides with the specimen, a deflection system including a plurality of deflection units situated along the optical axis for deflecting the particle beam to allow scanning on the specimen with large area, at least one of the deflection units located in the retarding field of the beam, the remainder of the deflection units located within the central bore of the objective lens, and a detection unit to capture secondary electron (SE) and backscattered electrons (BSE).
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: June 26, 2018
    Assignee: HERMES MICROVISION INC.
    Inventors: Shuai Li, Zhongwei Chen